69 research outputs found

    Multiple transcription factors directly regulate Hox gene lin-39 expression in ventral hypodermal cells of the C. elegans embryo and larva, including the hypodermal fate regulators LIN-26 and ELT-6

    Get PDF
    BACKGROUND: Hox genes encode master regulators of regional fate specification during early metazoan development. Much is known about the initiation and regulation of Hox gene expression in Drosophila and vertebrates, but less is known in the non-arthropod invertebrate model system, C. elegans. The C. elegans Hox gene lin-39 is required for correct fate specification in the midbody region, including the Vulval Precursor Cells (VPCs). To better understand lin-39 regulation and function, we aimed to identify transcription factors necessary for lin-39 expression in the VPCs, and in particular sought factors that initiate lin-39 expression in the embryo. RESULTS: We used the yeast one-hybrid (Y1H) method to screen for factors that bound to 13 fragments from the lin-39 region: twelve fragments contained sequences conserved between C. elegans and two other nematode species, while one fragment was known to drive reporter gene expression in the early embryo in cells that generate the VPCs. Sixteen transcription factors that bind to eight lin-39 genomic fragments were identified in yeast, and we characterized several factors by verifying their physical interactions in vitro, and showing that reduction of their function leads to alterations in lin-39 levels and lin-39::GFP reporter expression in vivo. Three factors, the orphan nuclear hormone receptor NHR-43, the hypodermal fate regulator LIN-26, and the GATA factor ELT-6 positively regulate lin-39 expression in the embryonic precursors to the VPCs. In particular, ELT-6 interacts with an enhancer that drives GFP expression in the early embryo, and the ELT-6 site we identified is necessary for proper embryonic expression. These three factors, along with the factors ZTF-17, BED-3 and TBX-9, also positively regulate lin-39 expression in the larval VPCs. CONCLUSIONS: These results significantly expand the number of factors known to directly bind and regulate lin-39 expression, identify the first factors required for lin-39 expression in the embryo, and hint at a positive feedback mechanism involving GATA factors that maintains lin-39 expression in the vulval lineage. This work indicates that, as in other organisms, the regulation of Hox gene expression in C. elegans is complicated, redundant and robust

    Transcription factor binding to Caenorhabditis elegans first introns reveals lack of redundancy with gene promoters

    Get PDF
    Gene expression is controlled through the binding of transcription factors (TFs) to regulatory genomic regions. First introns are longer than other introns in multiple eukaryotic species and are under selective constraint. Here we explore the importance of first introns in TF binding in the nematode Caenorhabditis elegans by combining computational predictions and experimentally derived TF-DNA interaction data. We found that first introns of C. elegans genes, particularly those for families enriched in long first introns, are more conserved in length, have more conserved predicted TF interactions and are bound by more TFs than other introns. We detected a significant positive correlation between first intron size and the number of TF interactions obtained from chromatin immunoprecipitation assays or determined by yeast one-hybrid assays. TFs that bind first introns are largely different from those binding promoters, suggesting that the different interactions are complementary rather than redundant. By combining first intron and promoter interactions, we found that genes that share a large fraction of TF interactions are more likely to be co-expressed than when only TF interactions with promoters are considered. Altogether, our data suggest that C. elegans gene regulation may be additive through the combined effects of multiple regulatory regions

    The C. elegans Snail homolog CES-1 can activate gene expression in vivo and share targets with bHLH transcription factors

    Get PDF
    Snail-type transcription factors (TFs) are found in numerous metazoan organisms and function in a plethora of cellular and developmental processes including mesoderm and neuronal development, apoptosis and cancer. So far, Snail-type TFs are exclusively known as transcriptional repressors. They repress gene expression by recruiting transcriptional co-repressors and/or by preventing DNA binding of activators from the basic helix-loop-helix (bHLH) family of TFs to CAGGTG E-box sequences. Here we report that the Caenorhabditis elegans Snail-type TF CES-1 can activate transcription in vivo. Moreover, we provide results that suggest that CES-1 can share its binding site with bHLH TFs, in different tissues, rather than only occluding bHLH DNA binding. Together, our data indicate that there are at least two types of CES-1 target genes and, therefore, that the molecular function of Snail-type TFs is more plastic than previously appreciated

    Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities

    Get PDF
    Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a compact genome and a wealth of genomic tools. However, identification of regulatory elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 763 sequence-specific transcription factors (TFs). To address this problem, we performed protein binding microarray experiments on representatives of canonical TF families in C. elegans, obtaining motifs for 129 TFs. Additionally, we predict motifs for many TFs that have DNA-binding domains similar to those already characterized, increasing coverage of binding specificities to 292 C. elegans TFs (~40%). These data highlight the diversification of binding motifs for the nuclear hormone receptor and C2H2 zinc finger families, and reveal unexpected diversity of motifs for T-box and DM families. Motif enrichment in promoters of functionally related genes is consistent with known biology, and also identifies putative regulatory roles for unstudied TFs

    Gateway Recombinational Cloning

    No full text

    Yeast one-hybrid assays: A historical and technical perspective

    No full text
    Since its development about two decades ago, the yeast one-hybrid (Y1H) assay has become an important technique for detecting physical interactions between sequence-specific regulatory transcription factor proteins (TFs) and their DNA target sites. Multiple versions of the Y1H methodology have been developed, each with technical differences and unique advantages. We will discuss several of these technical variations in detail, and also provide some ideas for how Y1H assays can be further improved

    Gateway-Compatible Yeast One-Hybrid and Two-Hybrid Assays

    No full text
    In the first section of this introduction, we provide background information for yeast two-hybrid (Y2H) assays that provide a genetic method for the identification and analysis of binary protein-protein interactions and that are complementary to biochemical methods such as immunoprecipitation. In the second section, we discuss yeast one-hybrid (Y1H) assays that provide a gene-centered (DNA-to-protein) genetic method to identify and study protein-DNA interactions between cis-regulatory elements and transcription factors (TFs). This method is complementary to TF-centered (protein-to-DNA) biochemical methods such as chromatin immunoprecipitation

    Identifying Interactors from an Activation Domain Prey Library

    No full text
    In yeast hybrid assays, the process of identifying preys that interact with the bait of interest involves several steps. First, in this protocol, the bait yeast strain is transformed with a library of activation domain (AD)-prey clones and plated on selective media containing 3-aminotriazole (3AT). This selects transformants containing an AD-prey clone that induces HIS3 reporter expression. Second, these HIS-positive colonies are analyzed for LacZ induction (and, optionally, URA3 induction in yeast two-hybrid (Y2H) assays). Third, yeast PCR is used on these double-positive colonies to amplify the insert from the AD-prey plasmid. Fourth, some of this PCR product is used to perform a gap-repair retest to confirm the interaction in fresh bait-strain yeast, and the remainder is used for DNA sequencing to determine prey identity for those that successfully retest. Finally, interactions are carefully examined to filter out likely false-positive interactions. This protocol takes 20-43 d plus sequence confirmation to complete
    • ā€¦
    corecore