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ABSTRACT 26 

Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a 27 

compact genome and a wealth of genomic tools.  However, identification of regulatory 28 

elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 29 

763 sequence-specific transcription factors (TFs).  To address this problem, we performed 30 

protein binding microarray experiments on representatives of canonical TF families in C. 31 

elegans, obtaining motifs for 129 TFs.  Additionally, we predict motifs for many TFs that 32 

have DNA-binding domains similar to those already characterized, increasing coverage of 33 

binding specificities to 292 C. elegans TFs (~40%).  These data highlight the diversification 34 

of binding motifs for the nuclear hormone receptor and C2H2 zinc finger families, and 35 

reveal unexpected diversity of motifs for T-box and DM families.  Motif enrichment in 36 

promoters of functionally related genes is consistent with known biology, and also identifies 37 

putative regulatory roles for unstudied TFs.   38 

39 
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INTRODUCTION 40 

Transcription factors (TF) are sequence-specific DNA binding proteins that control gene 41 

expression, often regulating specific biological processes such as pluripotency and differentiation 42 

(Takahashi and Yamanaka 2006), tissue patterning (Lemons and McGinnis 2006), the cell cycle 43 

(Evan et al. 1994), metabolic pathways (Blanchet et al. 2011), and responses to environmental 44 

stimuli (Benizri et al. 2008). The nematode C. elegans is a powerful model for studying gene 45 

regulation as it is a complex and motile animal, yet has a compact genome (~100 Mbp) 46 

(C.elegans consortium 1998) featuring relatively short intergenic regions (mean 1,389 bp; 47 

median 662 bp).  Indeed, the observation that proximal promoter sequence is often sufficient to 48 

produce complex tissue-specific gene expression patterns (Dupuy et al. 2004; Zhao et al. 2007; 49 

Grove et al. 2009; Sleumer et al. 2009; Niu et al. 2011) indicates that long-range gene regulation 50 

through enhancers is not as abundant in C. elegans as it is in flies or mammals (Gaudet and 51 

McGhee 2010; Reinke et al. 2013). 52 

C. elegans has 934 annotated TFs (Reece-Hoyes et al. 2005), and 744 proteins that possess a 53 

well-characterized sequence-specific DNA-binding domain (Weirauch and Hughes 2011; 54 

Weirauch et al. 2014).  C. elegans contains major expansions of several specific TF families, 55 

with Nuclear Hormone Receptor (NHR), Cys2His2 (C2H2) zinc finger, homeodomain, bHLH, 56 

bZIP, and T-box together comprising 74% of the TF repertoire (Reece-Hoyes et al. 2005; Haerty 57 

et al. 2008).  The lineage-specific expansion of C2H2 zinc finger TFs is similar to that observed 58 

in many animals, including diversification of DNA-contacting “specificity residues”, suggesting 59 

diversification in DNA binding specificity (Stubbs et al. 2011).  The C. elegans genome encodes 60 

an unusually large number of NHRs (274 members), more than five times the number in human 61 

(48 members) (Enmark and Gustafsson 2001; Reece-Hoyes et al. 2005).  It is speculated that the 62 
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NHRs may serve as environmental sensors (Enmark and Gustafsson 2001; Arda et al. 2010), 63 

providing a possible explanation for their variety and numbers.  Five of the six major NHR sub-64 

families found across metazoa are also found in C. elegans (NR3 is lacking), but the vast 65 

majority of C. elegans NHRs define novel sub-families that are not present in other metazoans 66 

(Van Gilst et al. 2002) and which are derived from an ancestral gene most closely resembling 67 

HNF4 (aka NR2A) (Robinson-Rechavi et al. 2005).  Extensive variation in the DNA-contacting 68 

recognition helix or “P-box” suggests that C. elegans NHRs, like C2H2 and bHLH families, 69 

have diversified DNA sequence specificities, and that many will recognize novel motifs (Van 70 

Gilst et al. 2002). The T-box gene family presents another example of a nematode-specific 71 

expansion, with 22 members in C. elegans, of which 18 lack one-to-one orthologs in other 72 

metazoan lineages (Minguillon and Logan 2003).  Only four have known binding motifs, and 73 

unlike most other TFs, T-box binding motifs are virtually identical across the metazoa (Sebe-74 

Pedros et al. 2013; Weirauch et al. 2014); the diversification of TFs is often associated not only 75 

with changes in DNA sequence specificity, but also alteration in protein-protein interactions and 76 

expression of the TF gene itself (Grove et al. 2009; Reece-Hoyes et al. 2013). 77 

Despite extensive study of gene regulation, including several large-scale efforts (Deplancke et al. 78 

2006; Grove et al. 2009; Lesch et al. 2009; Gerstein et al. 2010; Niu et al. 2011; Sarov et al. 79 

2012; Reece-Hoyes et al. 2013; Araya et al. 2014), the landscape of C. elegans TF sequence 80 

specificities remains largely unknown.  To our knowledge, motifs are currently known for only 81 

71 C. elegans TFs, including those determined in single-gene studies, previous PBM analyses, 82 

and modENCODE TF ChIP-seq data (Matys et al. 2006; Araya et al. 2014; Mathelier et al. 2014; 83 

Weirauch et al. 2014).   It has been surprisingly difficult to obtain motifs from ChIP-seq data 84 

(Niu et al. 2011; Araya et al. 2014), possibly due to indirect binding, or a dominant role of 85 
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chromatin structure in either determining in vivo binding sites (Song et al. 2011) or in the 86 

purification of chromatin fragments (Teytelman et al. 2013).  Yeast one-hybrid (Y1H) assays 87 

(Reece-Hoyes et al. 2011) cannot be used easily to derive TF motifs, because the DNA 88 

sequences tested are too large (~2 kb on average). However, there is a strong statistical 89 

correspondence between motifs determined by Protein Binding Microarrays (PBMs) and Y1H 90 

data (Reece-Hoyes et al. 2013).  Computational approaches coupling promoter sequence 91 

conservation and/or gene expression data to identify TF motifs de novo have collectively 92 

produced many more motifs than there are TFs (Beer and Tavazoie 2004; Sleumer et al. 2009; 93 

Zhao et al. 2012), and also do not inherently reveal the cognate TFs that correspond to each 94 

putative motif.  Multimeric binding represents one possible complication in the analysis of in 95 

vivo TF binding data (Ao et al. 2004).   Indeed, TF co-associations were identified based on 96 

ChIP-seq peak binding overlaps in C. elegans modENCODE studies (Araya et al. 2014), but the 97 

underlying sequence recognition mechanisms were not apparent. 98 

Here, we use PBMs to systematically identify C. elegans TF DNA-binding motifs.  We selected 99 

a diverse set of TFs to assay, ultimately obtaining 129 motifs from different TF families and 100 

subclasses. The data show that the expansion of most major TF families is associated with 101 

diversification of DNA-binding motifs.  Motif enrichment in promoters reveals that our motif 102 

collection readily associates individual TFs with putative regulated processes and pathways. 103 

104 
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RESULTS 105 

Overview of the PBM data 106 

The key goal of this project was to expand our knowledge of DNA sequence specificities of C. 107 

elegans TFs.  To do this we analyzed a diverse set of TF DNA-binding domains (DBDs) (see 108 

below) with PBM assays (Berger et al. 2006; Weirauch et al. 2014).  Briefly, the PBM method 109 

works by “hybridizing” a GST-tagged DNA-binding protein (in our assays, the DNA-binding 110 

domain of a TF plus 50 flanking amino acids) to an array of ~41,000 defined 35-mer double-111 

stranded DNA probes.  The probes are designed such that all 10-mer sequences are present once 112 

and all non-palindromic 8-mers are thus present 32 times in difference sequence contexts 113 

(palindromic 8-mers occur 16 times).  A fluorescently labelled anti-GST antibody illuminates the 114 

extent to which each probe is bound by the assayed TF.  Using the signal intensity for each 115 

probe, the specificity of the TF is derived.  For each individual 8-mer, we derive both E-scores 116 

(which represent the relative rank of microarray spot intensities, and range from -0.5 to + 0.5 117 

(Berger et al. 2006)) and Z-scores (which scale approximately with binding affinity (Badis et al. 118 

2009)).  PBMs also allow derivation of Position Weight Matrices (PWMs) up to 14 bases long 119 

(Berger et al. 2006; Mintseris and Eisen 2006; Badis et al. 2009; Weirauch et al. 2013) 120 

(hereafter, we take “motif” to mean PWM).  To determine PWMs, we used the data from PBM 121 

assays performed on two different array designs to score the performance of PWMs obtained 122 

from different algorithms, as previously described (Weirauch et al. 2013; Weirauch et al. 2014).  123 

In this study, we selected TFs to analyze on the basis of their DBD sequence, aiming to examine 124 

at least one TF from each group of paralogous TFs, and biasing against TFs that have known 125 

PBM motifs, or close orthologs or paralogs with known motifs (see Methods for full description 126 
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of selection scheme).  The selections were guided by previous PBM analyses that determined 127 

sequence identity thresholds for each DBD class that correspond to motif identity (Weirauch et 128 

al. 2014).  To identify TFs, we used the CisBP definition of DBDs (Weirauch et al. 2014), which 129 

employs a list of well-characterized eukaryotic DBDs and a distinct significance threshold for 130 

each DBD class.  CisBP identified 744 C. elegans proteins, encompassing 52 domain types 131 

(listed in Figure 1–source data 1).  689 (93%) of these 744 are present in the wTF catalog of 132 

934 annotated TFs (Reece-Hoyes et al. 2005); thus these sets are largely overlapping.  We 133 

manually examined the differences between the two TF lists (see Supplemental File 1) and 134 

found that most of them can be accounted for by (i) changes to the C. elegans protein catalog 135 

over time; (ii) differences in domain classes included; (iii) differences in domain score threshold, 136 

(iv) fewer manual annotations in CisBP, and (v) ambiguity in classifying C2H2 zinc fingers as 137 

TFs.  Overall, wTF2.0 contains only 19 proteins that are not in CisBP and that are very likely 138 

bona fide sequence-specific TFs.  wTF2.0 also contains 83 C2H2 proteins that fall below the 139 

CisBP score threshold, 52 of which have only a single C2H2 domain.  DNA recognition 140 

typically requires multiple C2H2 domains; however, some fungal TFs do bind DNA with a 141 

single C2H2, employing additional structural elements (Wolfe et al. 2000).  Thus, these proteins 142 

have an ambiguous status.  In general, CisBP excludes proteins with lower domain scores and 143 

those with little or no evidence for sequence-specific DNA binding, and we therefore refer to the 144 

744 in CisBP plus the 19 additional bona fide TFs as the 763 “high confidence” C. elegans TFs.   145 

We attempted to clone DBDs from 552 unique high confidence TFs, ultimately obtaining clones 146 

for 449, all of which we assayed by PBMs.  After employing stringent success criteria (see 147 

Methods) we obtained sequence specificity data (8-mer scores and motifs) for 129 DBDs.  PBM 148 

“failures” may be due to any of several causes, including protein misfolding, requirement for 149 
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cofactors or protein modifications (e.g. phosphorylation), or bona fide lack of sequence-specific 150 

DNA binding activity.  The overall success rate (29%) is comparable to that we have observed 151 

from analysis of thousands of DBDs from diverse species (35%) (Weirauch et al. 2014). 152 

A summary of our results is presented in Figure 1, broken down by motif numbers and percent 153 

coverage for individual DBD classes.  Our motif collection encompasses 26 different DBD 154 

classes, and greatly increases the number and proportion of C. elegans TFs for which motifs 155 

have been identified experimentally, from 71 (10%) to 195 (26%) (five of the 129 had 156 

previously-known motifs).  The new data encompass all of the large TF families, including 157 

C2H2 zinc fingers, NHRs, bZIPs, homeodomains, DM domains, and GATA proteins.  158 

Validation of motifs, motif novelty, and motifs predicted using homology 159 

We next asked whether our new data are consistent with previous knowledge. Of the 129 TFs, 160 

only five have previously known motifs, all of which we recapitulated (Figure 1–figure 161 

supplement 1).  The sequence preferences for most of the 129 TFs were different from those of 162 

any previously assayed TF, however.  The boxplots in Figure 2A, B, C, and Figure 2–figure 163 

supplements 1-4 show that, on average, the new TFs we analyzed bound a set of 8-mers that 164 

was largely non-overlapping with that of the most similar protein that had been analyzed 165 

previously by PBM (red circles indicate the 8-mer overlap between individual TFs analyzed by 166 

PBM in our study, and the most similar TF analyzed by PBM in any study).  Nonetheless, some 167 

pairs of TFs have DBDs that are highly similar, and bind highly overlapping 8-mers.  These 168 

observations are quantitatively consistent with the prior study we used for guidance in selecting 169 

TFs (black box plots) (Weirauch et al. 2014), and thus, we expect that the scheme for predicting 170 

sequence specificity via amino acid identity that was proposed in the prior study can also be used 171 
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in C. elegans.  In this scheme, TFs without DNA-binding data are simply assigned the motifs and 172 

8-mer data for other TFs with DBD amino acid similarity above a threshold, if those data exist.  173 

These TFs can be from C. elegans or from other species.  If we include these predicted motifs, 174 

then the number of C. elegans TFs with an associated motif increases to 292 (39%), including 175 

TFs with motifs predicted from other C. elegans TFs (24) and those with motifs predicted from 176 

other species (79).  177 

Expert curation of motifs 178 

The entire C. elegans motif collection, including our new data, previously published motifs, and 179 

those predicted by homology from other TFs in C. elegans and other species, encompasses 1,769 180 

unique motifs representing only 292 TFs.  About half (157, or 54%) of the 292 TFs with motifs 181 

are represented by only a single motif, as there was no data prior to our study for these TFs or 182 

their close homologs.  Some TFs (e.g. homeodomains, PAX, and forkheads), however, are highly 183 

conserved and thus have many orthologs above the prediction threshold.  In addition, TFs that 184 

are known developmental regulators tend to be well studied, and often possess multiple 185 

associated motifs.  To gain an overview of the full motif collection, and to compare among the 186 

multiple motifs for each protein, we used the PWMclus tool (Jiang and Singh 2014), with default 187 

settings, to obtain groups of highly-related motifs from all TFs within each DBD class.  This tool 188 

uses an information-content weighted Pearson correlation between aligned PWM columns as a 189 

similarity measure for hierarchical clustering, then selects branches within which the average 190 

internal correlation exceeds R ≥ 0.8.  This procedure collapsed the 1,769 motifs into a set of 424 191 

clusters.  This number is still larger than the number of TFs with either known or predicted 192 

motifs (292), since there are many cases in which motifs for a single TF are distributed across 193 
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multiple clusters, although in 67% of cases in which there are multiple known and predicted 194 

motifs for a given protein, the majority of them do form a single cluster.   195 

There appear to be several explanations for this phenomenon, as exemplified by the bZIP family 196 

shown in Figure 2D.  First, different studies and different experimental (or computational) 197 

techniques often yield motifs for the same protein that are clearly related by visual examination, 198 

but score as different from each other using PWMclus. For example, there are four different 199 

motifs for skn-1 (from PBM, Chip-seq, and Transfac) that all contain the same half-site, ATGA, 200 

but have different flanking sequence preferences.  Similarly, for Forkhead TFs FKH-1 and UNC-201 

130, different methods produce variants with differences in the sequences flanking the core 202 

TGTTT Forkhead binding site.  A related explanation is that a single motif may not adequately 203 

capture all aspects of TF sequence preferences, such as the ability of many TFs to bind as both a 204 

monomer and a homodimer (or multimer) with preferred spacing and orientation, variability in 205 

the preferred spacing, changes to the preferred monomeric sites that are associated with 206 

dimerization, and effects of base stacking that result in preferred polynucleotides at some 207 

positions (Jolma et al. 2013).  In addition, different experimental methods may capture some 208 

aspects of DNA binding complexity better than others. 209 

It is inconvenient to have a large number of motifs for a single protein for several reasons.  First, 210 

it is difficult to peruse the full motif collection.  In addition, comprehensive motif scanning is 211 

slower with a large number of motifs, and the motif scans produce partially redundant results that 212 

require deconvolution and reduce statistical power.  We therefore sought to identify a single 213 

motif or set of motifs for each protein that are minimally redundant, and are best supported by 214 

existing data.  We used a semi-automated scheme that considers all data available (similar to that 215 

described in (de Boer and Hughes 2011); see Methods).  Briefly, we prioritized motifs that are 216 
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(a) measured experimentally, rather than predicted; (b) more similar to other motifs for the same 217 

TF, or highly similar TFs, especially if they are derived from in vitro data, which would be free 218 

of confounding effects present in vivo; (c) assigned to the cluster that contains the majority of 219 

motifs for that TF; (d) most consistent with the type of sequences that a given DBD class 220 

typically binds; (e) best supported by ChIP-seq or Y1H data, if available (see below).   221 

This procedure resulted in a set of 284 motifs representing the 292 C. elegans TFs with 222 

experimentally determined or predicted motifs (Supplemental File 2).  The outcome for the 223 

bZIP family is shown on the right of Figure 2D, which illustrates that the motif curation 224 

procedure produces motifs that are consistent with known bZIP class binding sites. The curated 225 

set also contains 16 cases in which the same protein is represented by multiple motifs 226 

(exemplified by the GATA family TF ELT-1, which binds as both a monomer and a homodimer, 227 

Figure 2–figure supplement 5), and 11 cases in which more than one protein is represented by 228 

the same motif (e.g. GATA family TFs MED-1 and MED-2, Figure 2–figure supplement 5; in 229 

all of these cases, the TFs are highly similar proteins).  We also note that PWMclus subdivides 230 

the 284 curated motifs into only 127 different clusters (data not shown), because the motif(s) 231 

contained in many of the clusters met few or none of the selection criteria above.   232 

Overview of PBM 8-mer data 233 

The majority of the expert curated motifs (237, or 84%) are derived from the PBM data 234 

described in this study or from previous studies (compiled in (Weirauch et al. 2014)), which are 235 

the only data available for the majority of the 292 TFs with motifs.  We reasoned that the PBM 236 

data should facilitate direct comparison among TF sequence preferences, as they were generated 237 

using identical methodology.  In addition, PBMs facilitate comparisons because they produce 238 
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scores for individual DNA 8-mers.  Thus, to complement the PWM analysis above, we examined 239 

as a composite the 8-mer E-score data for all of the TFs analyzed in this study using PBMs.  240 

Figure 3 illustrates that the 8-mers recognized by each individual protein are in general distinct, 241 

and further highlights the distinctiveness of the sequences preferred by different TFs that share 242 

the same type of DBD.  For example, C. elegans homeodomain and Sox TFs display different 243 

sequence preferences that largely reflect the known subclasses (Figure 3 and data not shown; all 244 

data and motifs are available in the Cis-BP database (see Data Access section below).  We also 245 

observed subtle differences in Forkhead DNA sequence preferences: despite the motifs having 246 

similar appearance, the proteins prefer slightly different sets of 8-mers, as previously observed 247 

using only PBM data (Badis et al. 2009; Nakagawa et al. 2013), indicating that these variations 248 

are not due to differences in methodology.  Other large C. elegans TF families display 249 

undocumented and unexpected diversity in their DNA sequence preferences, which we next 250 

examined in greater detail. 251 

Complex relationships between protein sequences and motifs recognized by the NHR 252 

family 253 

Previously, the literature contained motifs for only eight of the 271 C. elegans NHRs, while 254 

motifs for an additional 13 could be predicted from orthologs and paralogs (Hochbaum et al. 255 

2011; Weirauch et al. 2014).  It has also been reported that additional C. elegans NHRs bind 256 

sequences similar to those bound by their counterparts in other vertebrates (Van Gilst et al. 257 

2002), but the data available does not lend itself to motif models that can be used for scanning.  258 

We obtained new PBM data for 20 C. elegans NHRs (Figure 4), among which only one had a 259 

previously known motif (DAF-12, which yielded a motif identical to one found by ChIP-chip 260 

(Hochbaum et al. 2011)).  None of the remaining 19 could have been predicted by simple 261 
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homology; due to their widespread divergence, and absence of motifs for most NHRs, few motifs 262 

can be predicted by homology among the C. elegans NHR class at our threshold for motif 263 

prediction (70% identity for NHRs).  However, these 19 new NHR motifs do lead to predicted 264 

motifs for eight additional C. elegans NHRs. 265 

The most striking feature of the NHR motifs is their diversity, but an equally surprising 266 

observation is that very different NHRs can bind very similar sets of sequences.  Data from the 267 

27 NHRs that have been analyzed by PBMs in our study or others are shown in Figure 4.  We 268 

obtained 13 different groups of motifs, using the PWMclus methodology described above 269 

(indicated by shading of dendrogram labels in Figure 4).  We expected that all 27 of these NHRs 270 

might have yielded a distinct motif, as no two are more than 70% identical to each other.  In 271 

several cases, however, NHRs with very different overall DBD sequences (below the threshold 272 

for predicting motif identity) in fact display similar sequence preferences, while more similar 273 

NHR TFs often bind different motifs, as the shading on the labels in Figure 4 does not strictly 274 

reflect the dendrogram.  We also note that the data for individual 8-mers appears more complex 275 

than the motif groups capture (see heatmaps in Figure 4).  For example, the individual 8-mer 276 

scores for TFs represented by the two largest groups of motifs - sets binding sequences related to 277 

G(A/T)CACA and (A/T)GATCA, respectively - indicates that they may in fact possess distinct 278 

DNA sequence preferences (Figure 4, top and bottom).  These subtle and complex differences 279 

are presumably obscured by the motif derivation process, which tends to produce degenerate (i.e. 280 

low information content) motifs for most of these TFs.  In addition, or possibly as a 281 

consequence, the default correlation threshold used by the PWMclus algorithm groups these TFs 282 

together.    283 
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To examine the determinants of NHR sequence preferences more closely, we considered NHR 284 

recognition helix (RH) sequences (Figure 4, middle).  Of the 95 unique RH sequences found in 285 

C. elegans NHRs, 15 are found in our data, including multiple representatives of most of the 286 

populous RHs (our data contain ten of the 75 with RA-AA; 3 of the 19 with NG-KT; 2 of the 10 287 

with NG-KG; and one of the seven with AA-AA).  It is believed that identity in the recognition 288 

helix corresponds to identity in sequence preference (Van Gilst et al. 2002); surprisingly, 289 

however, we found that TFs with identical RH sequences can bind very different DNA 290 

sequences.  For example, NHR-177 shares the RA-AA recognition helix with nine other NHRs 291 

examined in our study, yet binds a completely different set of sequences (resembling CGAGA, 292 

unlike the CACA-containing motifs of the others).  Conversely, NHRs with different RH 293 

sequences can have very similar DNA sequence preferences.  NHR-66 and NHR-70, for 294 

example, differ at two of the four variable residues in the recognition helix (AA-SA vs. RA-AA), 295 

and share only ~49% amino acid identity (and NHR-66 contains a three-residue insertion).  Yet 296 

they bind highly overlapping sets of 8-mers, and produce motifs featuring CTACA.  Thus, there 297 

is an imperfect correspondence between identity in the recognition helix and identity in DNA 298 

binding sequence preferences, suggesting that additional residues within (or flanking) the DBD 299 

contribute to the specificity of C. elegans NHR proteins.  These observations also show that, 300 

when NHRs with very different overall DBD sequences bind similar motifs, it is typically not 301 

due to the two proteins sharing the same RH. 302 

Only one NHR, SEX-1, produced a motif strongly resembling the canonical steroid hormone 303 

response element (SHRE) (GGTCA); SEX-1 shares three of four variable residues in the 304 

recognition helix with canonical SHRE binding TFs such as the Estrogen Receptor (SEX-1: EG-305 
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KG; ER: EG-KA).  Moreover, none of the NHRs examined produced a motif matching that of 306 

HNF4, the presumed ancestor of most C. elegans NHRs.   307 

Motifs for C. elegans C2H2 TFs are supported by the recognition code 308 

We obtained new PBM data for 42 C2H2 zinc finger (ZF) TFs (Figure 5), only one of which 309 

was previously known (Figure 1–figure supplement 1).  Previously there were only six 310 

experimentally-determined C. elegans C2H2 motifs in the literature, and 11 that could be 311 

predicted by homology, all of which are well conserved in distant metazoans (members of KLF, 312 

SP1, EGR, SNAIL, OSR, SQZ, and FEZF families); seven of these are among our data and have 313 

PBM motifs consistent with those predicted (data not shown).  Only two additional TFs (ZTF-25 314 

and ZTF-30) can be assigned motifs by homology using our new data.  Together, the new data 315 

and predictions bring the total number of C. elegans C2H2 TFs with motifs to 53 (~50% of the 316 

107 C2H2s in our list of 763 TFs). 317 

The C2H2 motifs are diverse (Figure 5), but unlike the NHR family, the molecular determinants 318 

of C2H2 DNA sequence specificities are more readily understood.  The motifs we obtained are 319 

broadly consistent with previously determined relationships between DNA contacting residues 320 

and preferred bases (the so-called “recognition code”) (Wolfe et al. 2000), although the motifs 321 

predicted by the recognition code are not sufficiently accurate to be used in motif scans (median 322 

R2 = 0.21 vs. predictions made by an updated recognition code that surpasses all previous 323 

recognition codes when compared against gold standards (Najafabadi et al. 2015).  While most 324 

of the motifs are similar to those predicted by the recognition code (Figure 5–figure 325 

supplement 1), lower similarity is observed for TFs with unusual inter-C2H2 linker lengths and 326 

atypical zinc-coordinating residues (Figure 5–figure supplement 1).  In some cases, differences 327 
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in the motifs obtained from related C2H2 TFs can be rationalized:  Figure 5 (right) shows the 328 

example of paralogs EGRH-1 and EGRH-3, in which the motifs obtained by PBM closely reflect 329 

those predicted by the recognition code, which differ at several positions.  Figure 5 also shows 330 

the example of Snail homologs CES-1 and K02D7.2, in which a short linker between fingers 2 331 

and 3 may explain the truncated motif in K02D7.2, and may also explain the differences 332 

previously observed between these two proteins in Y1H assays (Reece-Hoyes et al. 2009).  333 

Unexpected diversity in T-box DNA binding specificities 334 

We obtained motifs for four nematode-specific T-box TFs (i.e. lacking one-to-one orthologs in 335 

other phyla):  TBX-33, TBX-38, TBX-39, and TBX-43.  In addition, TBX-40 was previously 336 

analyzed by PBM, and our motif for the related protein TBX-39 (93% identical) is very similar.  337 

T-box TFs can bind to dimeric sites, with the characteristic spacing and orientation varying 338 

among different T-box proteins (Jolma et al. 2013).  The monomeric sequence preference 339 

(resembling “GGTGTG”) is thought to be constant, however, as it is observed across different T-340 

box classes and in distant phyla (Sebe-Pedros et al. 2013; Weirauch et al. 2014).  Strikingly, our 341 

new PBM data indicate that monomeric T-box sites can also vary considerably (Figure 6A).  342 

While the motifs for TBX-38 and TBX-43 are highly similar to the canonical “GGTGTG” motif, 343 

TBX-33, TBX-39 and TBX-40 exhibit novel recognition motifs.  344 

The primary determinants of sequence specificity of T-box TFs are believed to reside in amino-345 

acid residues located in α-helix 3 and the 310-helixC, which contact the major and minor groove, 346 

respectively (Muller and Herrmann 1997; Coll et al. 2002; Stirnimann et al. 2002), and indeed, 347 

the DNA contacting residues in TBX-33, -39, and -40 are different from those in T-box TFs that 348 

bind the canonical motif (Figure 6–figure supplement 1).  In addition, TBX-39 and -40 exhibit 349 
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sequence deletion in the “variable region”, and TBX-33 has an 18 amino acid insertion in the 350 

region leading up to the β-strand e’, which could also potentially alter sequence preferences via 351 

structural rearrangements.  352 

Variation in motifs for DM domains highlights nematode-specific expansions 353 

DM TFs are well studied because of their established roles in sex determination, and previous 354 

analyses established that different DM TFs often bind distinct motifs that typically contain a 355 

TGTAT core, including Drosophila doublesex, for which the family is named (Gamble and 356 

Zarkower 2012).  C. elegans and other nematodes encode several lineage-specific DM TFs in 357 

addition to orthologs shared across metazoans, with eight of the eleven C. elegans DM domains 358 

having less than 85% identity (our threshold for DM motif prediction) to any DM domain in 359 

insects and vertebrates (Weirauch et al. 2014).  Accordingly, most of the C. elegans DM 360 

domains have highest preference for sequences that are different from TGTAT, although in all 361 

but two cases the motifs do contain a TGT (Figure 6B).  DM domains encode intertwined 362 

CCHC and HCCC zinc binding sites, and are hypothesized to bind primarily in the minor groove 363 

(Zhu et al. 2000; Narendra et al. 2002).  A DNA-protein structure has not yet been described for 364 

any DM protein, however; mapping the determinants of their variable DNA sequence 365 

preferences will therefore require further study. 366 

Motif enrichment in Y1H and ChIP-seq data 367 

We next examined whether motifs from our collection correspond to modENCODE TF ChIP-seq 368 

data (Araya et al. 2014), and to TF prey - promoter bait interactions from Y1H experiments 369 

((Reece-Hoyes et al. 2013) and J.F-B. and A.J.M.W., unpublished data). Among the 40 TFs 370 

analyzed by ChIP-seq and present in our motif collection, peaks for 20 TFs displayed central 371 
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enrichment of motif scores (q-value < 0.05) using the CentriMo algorithm on the top 250 peaks 372 

(Bailey and Machanick 2012)) (Figure 7). Similarly, among 145 TFs both analyzed by Y1H and 373 

present in our motif collection, motif affinity scores for 103 were significantly enriched (Mann-374 

Whitney U test; q-value < 0.05) among promoter sequences scoring as positive by Y1H, relative 375 

to those scoring as negative by Y1H (Figure 7–figure supplement 1). The correspondence 376 

among these data sets is presumably imperfect due to indirect DNA binding in vivo, and/or the 377 

impact of chromatin and cofactors on binding site selection (Liu et al. 2006), both of which occur 378 

in C. elegans and yeast.  We note that, among the 25 TFs that are present in Y1H data, ChIP-seq 379 

data, and our motif collection, 11 are only significantly enriched in Y1H (using the cutoff 380 

above), five are only significantly enriched in ChIP-seq, and only five are significantly enriched 381 

in both.  Thus, most motifs (21/25; 84%) can be supported by independent assays, although the 382 

in vivo assays appear to capture different aspects of TF binding.  Overall, the clear relationship 383 

between our motifs and independent data sets strongly supports direct in vivo relevance of the 384 

motifs. 385 

We also examined whether we could detect multimeric or composite motifs (CMs) in existing 386 

ChIP-seq data sets by searching for enrichment of patterns in which there is fixed spacing and 387 

orientation between two or more motifs within the peaks, one of which corresponds to the TF 388 

that was ChIPed.    We identified 185 significantly enriched CMs (see Methods) involving 11/40 389 

ChIPed TFs, and 14 different TF families (including partner motifs) (Figure 8, Figure 8–source 390 

data 1).  As an example, the most highly significant result involves NHR-28, in which the six 391 

base core sequence "ACTACA" (which could correspond to NHR-28 or NHR-70) is found 392 

repeated in both dimeric and trimeric patterns (Figure 8A, top).  We also identified a CM 393 

involving LSY-2 (a bZIP protein) and NHR-232 with a spacing of one base between the core 394 
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motifs (Figure 8A, middle).  A subset of these instances included an additional ZIP-6 (bZIP) 395 

motif at a one base distance 3' of the NHR-232 motif, yielding a multi-family trimeric CM 396 

(Figure 8A, bottom).  397 

PWMclus grouped the 185 CMs into 37 clusters (Figure 8–figure supplements 1-5).  Most of 398 

the CMs were identified repeatedly for the same TF ChIPped in different developmental stages; 399 

these instances were considered separately in the analysis above, and highlight the robustness of 400 

the observations.  Some of the clusters also correspond to CMs containing motifs for related TFs, 401 

demonstrating robustness to the exact motif employed.  Our methodology allowed the individual 402 

motifs to overlap, and half of the 37 CM clusters represent such overlaps.  However, the majority 403 

of overlaps occur in the flanking low-information-content sections of motifs, such that most the 404 

37 CM clusters resemble a concatenation of two motif “cores” with or without a small gap (1-4 405 

bases).  Surprisingly, 17 of the 37 clusters (~46%) were obtained from the embryonic ChIP-seq 406 

data for the poorly-characterized, essential bZIP protein F23F12.9 (ZIP-8), which is most similar 407 

to human ATF TFs and binds both the ATF site and the CREB site (Figure 8–figure 408 

supplements 1-3).  In total, these results suggest that multimeric interactions within and between 409 

TF families may be a prevalent phenomenon in C. elegans.   410 

Motif enrichment in tissue and developmental-stage specific expression data 411 

To identify potential roles for TFs in the regulation of specific groups of functionally related 412 

genes, we asked whether the set of promoters containing a strong motif match to each TF (FIMO 413 

P-value < 10-4 in the region -500 to +100 relative to TSS) overlapped significantly with any 414 

tissue expression (Spencer et al. 2010), GO categories (Ashburner et al. 2000), or KEGG 415 

pathways (Kanehisa et al. 2014) (Fisher’s exact test, one-sided probability, FDR < 0.05).  We 416 



 20

obtained dozens of significant relationships (Figure 9), including known roles for GATA TFs in 417 

the regulation of intestinal gene expression (and related GO categories) (Pauli et al. 2006; 418 

McGhee 2007), HLH-1 in the regulation of muscle gene expression (Fukushige et al. 2006), 419 

DAF-19 (an RFX TF) in the regulation of ciliary genes (Swoboda et al. 2000), and PHA-4 in 420 

development of the pharynx (Gaudet and Mango 2002) (boxed in Figure 9).  We also note that 421 

the association of the motif for ZTF-19 (PAT-9), a C2H2 zinc finger protein, with genes 422 

expressed in L2 body wall muscle tissue is consistent with observed expression patterns for this 423 

gene in body wall muscle, as well as defective muscle development in a mutant (Liu et al. 2012).  424 

The ZTF-19 binding motif may therefore enable identification of specific downstream targets.  425 

Most of the associations in Figure 9, however, appear to represent potentially undocumented 426 

regulatory interactions, suggesting that the motif collection can be used to gain new biological 427 

insight.    428 
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DISCUSSION 429 

The collection of motifs described here will further advance C. elegans as a major model system 430 

for the study of gene regulation.  TF DNA-binding motifs enable dissection of promoters, 431 

prediction of new targets of TFs, and identification of putative new regulatory mechanisms.  432 

Statistical associations between motif matches in promoters and expression patterns or functional 433 

categories of genes also provide a ready starting point for directed experimentation; for example, 434 

analysis of gene expression in mutants.  Apparent position and orientation constraints between 435 

motif matches also suggest functional relationships.  Our observation that the largely unstudied 436 

bZIP TF F23F12.9 (ZIP-8) was involved in almost half of all CMs identified in this study 437 

suggests that it may function as a cofactor for targeting to open chromatin:  pioneer TF activity 438 

and partnering with other TFs has previously been proposed for other Creb/ATF proteins in 439 

mouse embryonic stem cells (Sherwood et al. 2014).   440 

A key observation in this study is that all of the large groups of TFs in C. elegans are malleable 441 

in their DNA binding sequence preferences.  The NHR is a striking case, even more so when we 442 

consider that our motifs encompass only monomeric binding sites.  A previous analysis classified 443 

the C. elegans NHRs into four subtypes, on the basis of their recognition helix sequences, and 444 

predicted that all of those in Class I (those most similar to canonical NHRs such as the Estrogen 445 

Receptor) would likely bind canonical SHRE GGTCA subsites (Van Gilst et al. 2002).  Instead, 446 

we find that those in Class I (the entire lower half in Figure 4) bind a wide range of sequences, 447 

and that the recognition helix cannot be the only determinant of sequence specificity.  Our 448 

observations are consistent with the previous demonstration that mutation of one or a few 449 

residues in the NHR recognition helix can result in dramatic changes in sequence preferences, 450 

but that mutations elsewhere in the DBD play a role in sequence selectivity (e.g. (McKeown et 451 
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al. 2014)).  Recent analyses of other DBD classes (e.g. C2H2 and Forkhead) also highlight the 452 

importance of residues beside the canonical specificity residues (Nakagawa et al. 2013; Siggers 453 

et al. 2014).  Together, these analyses strongly confirm that alteration of binding motifs is 454 

widespread among TF classes throughout evolution. 455 

Our study experimentally determined motifs for 129 TFs, all but five of which were previously 456 

unstudied, bringing the total number of C. elegans TFs with motifs to 292 (including predicted 457 

motifs and data already in the literature).  We estimate that the remaining 453 C. elegans TFs 458 

encode as many as 409 different DNA binding motifs, most of which correspond to NHRs, 459 

C2H2 ZFs, bHLHs, and Homeodomains (Supplemental File 3).   Additional effort will thus be 460 

required to obtain a complete motif collection.  For instance, even with our new motifs, and 461 

including motifs predicted by homology, coverage for the C. elegans NHR family is only 17%. 462 

For some classes of DBDs, most of the PBM assays yielded negative data. The NHRs in 463 

particular yielded only 20% success (27/135).  In addition, of the 108 that failed by PBM, we 464 

have tested 100 by Y1H, of which only 17 succeeded (three or more detected interactions; data 465 

not shown).  We observed no obvious property of their DNA contacting residues that strongly 466 

predicts success or failure and hypothesize that requirement for ligand binding, dimerization, 467 

cofactors, or protein modifications may represent other potential explanations for failures in 468 

heterologous assays.  Like human NHRs, the C. elegans NHRs have a ligand-binding domain 469 

that is distinct from the DNA-binding domain, and is thought to primarily regulate interactions 470 

with coactivators and corepressors (Sonoda et al. 2008).  Thus, ligand-dependent DNA binding 471 

seems unlikely, especially for an in vitro assay.  Yeast two-hybrid screens have identified several 472 

interactions between different NHRs (Simonis et al. 2009; Reece-Hoyes et al. 2013), suggesting 473 

that heterodimerization may be prevalent.  If DNA binding is often dependent on 474 
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heterodimerization, then ChIP-seq should often succeed where PBMs and Y1H fail, and 475 

heterodimeric motifs should be identified.  To our knowledge, however, there is only one 476 

published ChIP-seq data set for a C. elegans NHR that has yielded a motif de novo (NHR-25) 477 

(Araya et al. 2014; Boyle et al. 2014).  We did not test NHR-25 by PBM, although our predicted 478 

monomeric motif (from Drosophila Ftz-f1) resembles the motif identified by ChIP-seq.  As noted 479 

above, our motif for DAF-12 is also consistent with the motif obtained by ChIP-chip (Hochbaum 480 

et al. 2011).  In support of heteromeric binding, however, CMs involving NHRs and other TF 481 

families were prevalent in modENCODE ChIP-seq data (Figure 8–source data 1).   Further 482 

analysis will be required to explore the role of multimerization in C. elegans TF DNA binding 483 

and gene regulation. 484 

Finally, we note that there are numerous similarities between the TF collections of human, 485 

Drosophila, and C. elegans.  First, the total number TFs containing a canonical DBD varies only 486 

by a factor of ~2 (~1734, 701, and 744 for human, Drosophila, and C. elegans, respectively 487 

(Weirauch et al. 2014)).  The total number of groups of closely related paralogs (taken using the 488 

thresholds established in (Weirauch et al. 2014)), which should approximate the number of 489 

distinct motifs that can eventually be expected, also varies by only a factor of ~2 (the TFs fall 490 

into 1339, 656, and 632 groups of proteins expected to have very similar sequence specificity, 491 

respectively).  Our study also brings the proportion of C. elegans TFs with a known or predicted 492 

motif much closer to the proportion in human and Drosophila, (56.1%, 54.1%, and 39.2% for 493 

human, Drosophila, and C. elegans, respectively).  In addition, all three species possess a large 494 

number of diverse lineage-specific TFs, which are known or expected to bind different motifs:  495 

in human, ~700 C2H2 ZF TFs; in Drosophila, 230 C2H2 ZF TFs, and in C. elegans, 266 NHRs, 496 

99 C2H2 ZF TFs and – as we show here – roughly a dozen T-box and DM TFs.  Thus, despite 497 
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widespread conservation in TF number and gene expression (Stuart et al. 2003) among 498 

metazoans, extensive rewiring of the metazoan trans regulatory network is apparently common. 499 

500 
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MATERIALS AND METHODS 501 

Selection of TFs for analysis.  We compiled a list of 874 known and putative C. elegans TFs.  502 

We took 740 from build 0.90 of the CisBP database (Weirauch et al. 2014), plus additional 503 

candidate TFs that lack canonical DBDs (Reece-Hoyes et al. 2005).  We considered selecting 504 

each TF for characterization using the following criteria: 505 

1. Include the TF if its characterization would provide multiple motif predictions for 506 

other TFs, based on established prediction thresholds for the given DBD class 507 

(Weirauch et al. 2014);   508 

2. Include the TF if it is a member of a DBD class with relatively little available motif 509 

information; 510 

3. Include the TF if it has a known important biological role; 511 

4. Exclude the TF if it has already been characterized by PBM in another study; 512 

5. Exclude the TF if it is a member of a DBD class with a low PBM success rate; 513 

6. Exclude the TF if the resulting construct would be excessively long (for example, 514 

exclude C2H2 ZF TFs with many DBDs) 515 

Cloning of C. elegans TF DBDs.  We identified putative DBDs for all TFs by scanning their 516 

protein sequences using the HMMER tool (Eddy 2009), and a collection of 81 Pfam (Finn et al. 517 

2010) models taken from (Weirauch and Hughes 2011), as described previously (Weirauch et al. 518 

2014).  For some TFs, we could not identify DBDs using this procedure.  In such cases, DBDs 519 

were manually detected by lowering HMMER scanning thresholds, using DBDs annotated in the 520 

SMART database (Letunic et al. 2012), or performing literature searches. Using the above 521 

criteria for selection of TFs, we initially chose 398 TFs from the Walhout clone collection for 522 
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characterization. We designed primers (Supplementary File 4) to clone open reading frames 523 

(ORFs) comprising the DBDs plus additional flanking sequences (50 endogenous amino acid 524 

flanking residues, or until the end of the protein).  We inserted the resulting sequences using AscI 525 

and SbfI restriction sites into a modified T7-driven expression vector (pTH6838) that expresses 526 

N-terminal GST fusion proteins (Supplementary File 5).  In a first round of cloning we 527 

attempted cloning using both individual plasmids and pooled mRNA (by RT-PCR) or cDNA.  528 

After PBM analysis with the resulting clones, we then considered remaining uncharacterized 529 

TFs, and selected an additional 154 TFs using the same criteria as above.  The DBDs and 530 

flanking bases of these TFs were created using gene synthesis (BioBasic), and inserted into 531 

vectors as described above.  Primers and insert sequences are provided on our project web site.  532 

All clones were sequence verified.   533 

PBMs and data processing.  PBM laboratory methods were identical to those described 534 

previously (Lam et al. 2011; Weirauch et al. 2013).  Each plasmid was analyzed in duplicate on 535 

two different arrays with differing probe sequences.  Microarray data were processed by 536 

removing spots flagged as ‘bad’ or ‘suspect’, and employing spatial de-trending (using a 7x7 537 

window centered on each spot) (Weirauch et al. 2013).  Calculation of 8-mer Z- and E-scores 538 

was performed as previously described (Berger et al. 2006).  Z-scores are derived by taking the 539 

average spot intensity for each probe containing the 8-mer, then subtracting the median value for 540 

each 8-mer, and dividing by the standard deviation, thus yielding a distribution with a median of 541 

zero and a standard deviation of one. E-scores are a modified version of the AUROC statistic, 542 

which consider the relative ranking of probes containing a given 8-mer, and range from -0.5 to 543 

+0.5, with E>0.45 taken as highly statistically significant (Berger et al. 2008).  We deemed 544 

experiments successful if at least one 8-mer had an E-score > 0.45 on both arrays, the 545 
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complimentary arrays produced highly correlated E- and Z-scores, and the complimentary arrays 546 

yielded similar PWMs based on the PWM_align algorithm  (Weirauch et al. 2013).  547 

Generation of PWMs from PBMs.  Motif derivation followed steps as outlined previously 548 

(Weirauch et al. 2014). Briefly, to obtain a single representative motif for each protein, we 549 

generated motifs for each array using four different algorithms: BEEML-PBM (Zhao and Stormo 550 

2011), FeatureREDUCE (manuscript in prep, source code available at 551 

http://rileylab.bio.umb.edu/content/software), PWM_align (Weirauch et al. 2013), and 552 

PWM_align_Z (Ray et al. 2013). We scored each motif on the complimentary array using the 553 

energy scoring system utilized by the BEEML-PBM algorithm (Zhao and Stormo 2011).  We 554 

then compared these PWM-based probe score predictions with the actual probe intensities using 555 

(1) the Pearson correlation coefficient (PCC) and (2) the AUROC of “bright probes” (defined by 556 

transforming all probe intensities to Z-scores, and selecting probes with Z-scores >= 4), 557 

following (Weirauch et al. 2013).  Finally, we chose a single PWM for each DBD construct 558 

using these two criteria, as previously described (Weirauch et al. 2014). 559 

Expert curation.  For every TF with motif information we selected a representative motif, or 560 

motifs if that TF appears to have multiple binding modes (e.g multimers), using the following 561 

scheme.  If the TF has an experimentally derived motif it is selected as the primary motif.  If 562 

there are multiple such motifs we selected one that was derived in vitro, if any. If the TF had 563 

multiple in vitro motifs, then we ranked PBM>B1H>SELEX, to maximize comparability among 564 

motifs, and excluded motifs that are inconsistent with known motifs for the same or highly 565 

related proteins.  If the TF had only predicted motifs, we selected a motif from a highly similar 566 

TF that is: preferably derived from an in vitro method (PBM>B1H>SELEX); assigned to the 567 
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cluster that contains the majority of motifs for that TF in our PWMclus analysis; consistent with 568 

known DBD preferences; and best supported by ChIP-seq or Y1H data, if available.   569 

Motif enrichment with Y1H and ChIP-seq data.  We calculated motif enrichment in ChIP-seq 570 

peaks using CentriMo (Bailey and Machanick 2012), which uses TF motifs to look for central 571 

enrichment of motifs in ChIP-seq peaks, as an indication of direct binding by that TF.  We 572 

obtained ChIP-seq peaks from the C. elegans modENCODE consortium (Araya et al. 2014).  We 573 

used the top 250 peaks ranked by Irreproducible Discovery Rate (Landt et al. 2012) as the input 574 

datasets.  We scored the curated set of motifs for TFs with peak datasets across all the peaks.  575 

We report false discovery rate (FDR)-adjusted p-values for a motif’s central enrichment in TF 576 

peak datasets.  577 

For yeast one-hybrid (Y1H) data, we assigned motif scores to promoter bait sequences using the 578 

BEEML scoring system (Zhao et al. 2009).  We included TFs in the analysis only if they bound 579 

five or more promoters in Y1H (those with 3 or 4 promoters bound were excluded to minimize 580 

sampling error in Mann-Whitney tests).  We scored only the promoter-proximal 500 bp of Y1H 581 

bait sequences, as activating TF binding sites are mainly effective within a few hundred bases of 582 

TSS in S. cerevisiae (Dobi and Winston 2007). We calculated motif enrichment or depletion for 583 

motifs using a two-tailed Mann–Whitney U test and reported with FDR-corrected p-values, with 584 

Y1H interactors as positives and the remaining non-interacting baits as the background.  585 

We performed composite motif (CM) analysis by scanning 77 C. elegans ChIP-seq top 250 peak 586 

sequences for all pairwise combinations between the 40 ChIPed TFs (using the curated list of 587 

PWMs) and 129 PBM-derived PWMs from this study.  Relative PWM spacing was restricted to -588 

5 (overlapping) to +10 (gapped) bp separation, with four possible stereospecific arrangements of 589 
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TFs:  TF-1 forward TF-2 forward (1F2F), TF-1 forward TF-2 reverse (1F2R), 2R1F, and 2F1F, 590 

yielding 64 stereospecific combinations.  We identified sequence matches using the standard log-591 

likelihood scoring framework (Stormo 2000), with a threshold of 0.50*max_score for each 592 

PWM, where max_score is the highest possible score for the given PWM.  We created 10 sets of 593 

background sequences by scrambling the input sequences (maintaining dinucleotide 594 

frequencies).  We calculated sample z-scores and p-values by comparing the number of sequence 595 

matches observed in the “real” sequence to the number observed in the random sequences, and 596 

applied a Bonferroni correction to each p-value.  To identify significant composite motifs, we 597 

filtered to retain only results with sequence match counts ≥ 10% of the number of input peak 598 

sequences and Bonferroni-adjusted p-values ≤ 0.05 (alpha=0.05).  We also considered an 599 

alternative null model, in which we shuffled the non-ChIPed motif, and counted matches in the 600 

original DNA sequences (this procedure was repeated 10x).  Overall, we found very good 601 

agreement using this approach and our original null model.  Out of the 635,712 possible patterns 602 

we tested, both methods call 635,483 insignificant, both call 49 positive, and they disagree on 603 

180 (Figure 8C).  Figure 8D plots the number of significant hits identified relative to 604 

dinucleotide scrambled sequences using shuffled (blue) and non-shuffled (red) non-ChIPed 605 

motifs.  This plot indicates, however, that the shuffled motif null model over-estimates the 606 

significance of CMs as the overlap of their constituent motifs increases, presumably due to 607 

dispersal of high information content “core” positions, which are typically adjacent in the real 608 

motifs.  We therefore use and report results based only on null model 1.  Sequence logos were 609 

constructed using the actual matches obtained in the ChIP-seq peak sequences, and the WebLogo 610 

3.4 tool (Crooks et al. 2004). For each TF family F, we calculated an odds ratio (OR) comparing 611 

the ratio of families in CMs to the ratio of families in the motif list. We define OR as (a/b)/(c/d), 612 
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where a is the number of TFs of family F involved in a CM; b is the total number of unique TF 613 

pairs involved in a CM, minus a; c is the number of TFs of family F in the motif list; and d is the 614 

total number of TFs in the motif list, minus c.  We calculated the standard error (SE) as 615 

√(1/a+1/b+1/c+1/d), and the 95% confidence interval as eln(OR)±1.96SE.  616 

Motif enrichment in co-regulated tissue/developmental stage-specific genes, KEGG and GO 617 

categories.  We obtained selectively enriched gene sets for each tissue from 618 

(http://www.vanderbilt.edu/wormdoc/wormmap/) GO annotations from 619 

(http://www.geneontology.org/) and KEGG pathway modules 620 

(http://www.genome.jp/kegg/module.html).  We ran FIMO (Grant et al. 2011) with default 621 

parameters.  622 
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FIGURE AND FIGURE SUPPLEMENT LEGENDS 640 

Figure 1. Motif status by DBD class. Stacked bar plot depicting the number of unique C. 641 

elegans TFs for which a motif has been derived using PBM (this study), previous literature 642 

(including PBMs), or by homology-based prediction rules (see main text). The y-axis is 643 

displayed on a log2 scale for values greater than zero.  See Figure 1-source data 1 for DBD 644 

abbreviations. Correspondence between motifs identified in current study and previously 645 

reported motifs are shown in Figure 1-figure supplement 1. 646 

 647 

Figure 1-figure supplement 1. Correspondence between TF motifs identified from our PBM 648 

study and previously reported motifs from several types of experimental data. 649 

 650 

Figure 2. Motif prediction, motif clustering, and identification of representative motifs. (A-651 

C), Boxplots depict the relationship between the %ID of aligned AAs and % of shared 8-mer 652 

DNA sequences with E-scores exceeding 0.45, for the three DBD classes, as indicated. %ID bins 653 

range from 0 to 100, of size 10, in increments of five. Red dots indicate individual TFs in this 654 

study, vs. the next closest TF with PBM data. Vertical lines indicate AA %ID threshold above 655 

which motifs can be predicted using homology, taken from (Weirauch et al. 2014). Boxplots for 656 

all other DBDs in current study are shown in Figure 2 - figure supplements 1-4. (D) Clustering 657 

analysis of motifs of bZIP domains using PWMclus (Jiang and Singh 2014). Coloured gridlines 658 

indicate clusters. Cluster centroids are shown along the diagonal; expert curated motifs are 659 

shown within the box at right. ‘E’ indicates experimentally determined motifs; ‘P’ indicates 660 

predicted motifs. Source of motif is also indicated. Results of motif curation for GATA family 661 

TFs is displayed in Figure 2-figure supplement 5. 662 

 663 

Figure 2-figure supplements 1-4. C. elegans TFs adhere to established thresholds for motif 664 

inference. Boxplots depict the relationship between the %ID of aligned AAs and % of shared 8-665 

mer DNA sequences with E-scores exceeding 0.45, for the DBD classes of TFs with PBMs from 666 

this study. %ID bins range from 0 to 100, of size 10, in increments of five. Red dots indicate 667 
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individual proteins in this study, vs. the next closest protein with PBM data. Vertical blue lines 668 

indicate AA %ID threshold above which motifs can be predicted using homology. 669 

 670 

Figure 2-figure supplement 5. GATA TF motif clustering and identification of 671 

representative motifs. Clustering analysis of C.elegans GATA TF’s motifs using PWMclus 672 

(Jiang and Singh 2014). Coloured gridlines indicate clusters. Cluster centroids are shown along 673 

the diagonal, while manually curated motifs are shown within the box at right. Bolded row 674 

names represent motifs obtained from this study. 675 

 676 

Figure 3. Overview of 8-mer sequences preferences for the 129 C. elegans TFs analyzed by 677 

PBM in this study. 2-D Hierarchical agglomerative clustering analysis of E-scores performed 678 

on all 5,728 8-mers bound by at least one TF (average E > 0.45 between ME and HK replicate 679 

PBMs). Coloured boxes represent DBD classes for each TF. 680 

 681 

Figure 4. 8-mer binding profiles of NHR family reveal distinct sequence preferences. Left, 682 

ClustalW phylogram of NHR DBD amino acid sequences with corresponding motifs. TF labels 683 

are shaded according to motif similarity groups identified by PWMclus.  Center, Heatmap 684 

showing E-scores. NHRs are ordered according to the phylogram at left. The 1,406 8-mers with 685 

E-score > 0.45 for at least one family member on at least one PBM array were ordered using 686 

hierarchical agglomerative clustering. Each TF has one row for each of two replicate PBM 687 

experiments (ME or HK array designs). Right; recognition helix (RH) sequences for the 688 

corresponding proteins, with identical RH sequence types highlighted by colored asterisks. 689 

Variant RH residues are underlined at bottom. Right, matrix indicates cluster membership ac- 690 

cording to PWMclus. Top and bottom. Pullouts show re-clustered data including only the union 691 

of the top ten most highly scoring 8-mers (taking the average E-score from the ME and HK 692 

arrays) for each of the selected proteins. 693 

 694 
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Figure 5. C2H2 motifs relate to DBD similarity and to the recognition code. Left, ClustalW 695 

phylogram of C2H2 ZF amino acid sequences with corresponding motifs. Right, examples in 696 

which motifs predicted by the ZF recognition code are compared to changes in DNA sequences 697 

preferred by paralogous C2H2 ZF TFs. Cartoon shows individual C2H2 ZFs and their specificity 698 

residues. Dashed lines correspond to 4-base subsites predicted from the recognition code. 699 

 700 

Figure 5-figure supplement 1. Comparison of C2H2 zinc finger recognition model with 701 

motifs derived PBM. Motif correlations between PBM derived motifs and ZF-model based 702 

predictions for TFs with both typical and atypical (A) linker lengths between ZF modules that 703 

are longer than 6 amino acids or shorter than 4 amino acids (B) Zinc coordinating cysteine or 704 

histidine structural motifs and (C) differing length of the ZF array. Examples of recognition code 705 

predictions (sequence logos) for both typical and atypical TFs are compared with PBM motifs 706 

for each case. The p-values shown are estimated from Student’s t-test. The number of TFs in 707 

each boxplot is shown above in parentheses. 708 

 709 

Figure 6. Nematode-specific sequence preferences in T-box and DM TFs. PBM data 710 

heatmaps of preferred 8-mers for T-box (A), and DM (B) TFs. TFs are clustered using ClustalW; 711 

8-mers were selected (at least one instance of E>0.45) and clustered using hierarchical 712 

agglomerative clustering, as in Figures 4 and 5. Ten representative 8-mers (those with highest E-713 

scores) are shown below for each of the clusters indicated in cyan. C. elegans TFs with data from 714 

this study are bolded. 715 

 716 

Figure 6-figure supplement 1. T-box sequence alignments and the crystal structure of 717 

mTBX3 illustrate C. elegans specific variations. (A) Multiple sequence alignment of T-box 718 

DBDs from C. elegans, the protist C. owczarzaki CoBra and mouse Eomes and TBX3. Key 719 

DNA binding residues identified from crystal structure of mTBX3 are highlighted in red. 720 

Sequence insertions (for TBX-33), changes in the variable region (for TBX-39/40) and 721 

significant sequence changes in the key 310C recognition helix (for TBX- 39/40) are highlighted 722 
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in blue frames. (B) Crystal structure model of mTBX3 is used as a prototype to illustrate C. 723 

elegans specific sequence variations. The primary recognition helix, 310C, is highlighted in 724 

yellow. 725 

 726 

Figure 7. The C. elegans curated motif collection explains ChIP-seq and Y1H TF binding 727 

data. Heatmap of CentriMo -log10(q-values) for central enrichment of TF motifs in the top 250 728 

peaks for each ChIP experiment. Motif enrichment in Y1H data is presented in Figure 7-figure 729 

supplement 1. Heatmaps are symmetric with duplicate rows to ensure the diagonal represents 730 

TF motif enrichment in it’s matching dataset(s). Red and blue colouring depicts statistically 731 

significant enrichments and depletions (q <= 0.05). 732 

 733 

Figure 7-figure supplement 1. The C. elegans curated motif collection explains Y1H TF 734 

binding data. Heatmap depicting enrichment or depletion (Mann-Whitney U test) of TF motifs 735 

in the interactions of TF’s with a collection of promoter bait sequences in Y1H experiments 736 

compared to all non-interacting bait sequences. 737 

 738 

Figure 8. Composite motifs enriched in C. elegans ChIP-seq peaks. (A) Stereospecificity 739 

plots showing enriched CM configurations for pairs of TF motifs. The identical “1F2F” and 740 

“2F1F” results in A (top row) demonstrate homodimer and homotrimer CMs, while those 741 

involving LSY-2, NHR-232, and R07H5.10 demonstrate heterodimer and heterotrimer CMs 742 

(middle and bottom rows, respectively). Black arrows represent orientation of the motif within 743 

CMs, while gray dashed arrows designate shadow motifs within trimeric CMs. Error bars are 744 

±S.D., *corrected p < 0.05. (B) Forest plot of odds ratios for TF family enrichment in CMs vs. 745 

input TF list. (C) Venn diagram showing overlap of significant CMs identified by null model 1 746 

(dinucleotide shuffled sequence) and null model 2 (motif shuffling). (D) Number of significant 747 

CMs identified relative to dinucleotide scrambled sequences using shuffled and non-shuffled 748 

non-ChIPed motifs, as a function of motif pair distance. 749 
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 750 

Figure 8-figure supplements 1-5. Summary of clustered CMs enriched in C. elegans ChIP-751 

seq peaks. CM cluster centroids are shown for the enriched motifs. For each cluster the ChIPed 752 

TF(s) and potential partner TF(s) are listed along with information about motif overlap (OLAP), 753 

spacing (GAP) and enrichment. Coloured arrows over motif indicate high information-content 754 

portions of either factor. 755 

 756 

Figure 9. Enrichment of motifs upstream of gene sets. Each row of the heatmap represents a 757 

motif from our curated collection that is enriched (q < 0.05) in at least one gene set category. 758 

Known regulatory interactions between TFs and gene sets are highlighted (black outlines). ‘E’ 759 

indicates experimentally determined motifs; ‘P’ indicates predicted motifs. Source of motif is 760 

also indicated. 761 

SOURCE DATA AND SUPPLEMENTARY FILE LEGENDS 762 

Figure 1-source data 1. Table of C. elegans TF repertoire motif coverage and list of TF 763 

DBDs present in C. elegans. The number of unique C. elegans TFs by DNA-binding domain 764 

family for which a motif has been derived using PBM (this study), previous literature (including 765 

PBMs), or by homology-based prediction rules and the list of C. elegans TFs by DNA-binding 766 

domain family type. 767 

 768 

Figure 3-source data 1. Table showing 8-mers bound by at least one TF with an E-score 769 

>=0.45 for all the 129 C. elegans TFs analyzed by PBMs in this study. 770 

 771 

Figure 4- source data 1. Table showing 8-mer E-score profiles of NHRs analyzed by PBMs.  772 

8-mers bound by at least one NHR with an E-score >=0.45 for all the C. elegans NHRs that have 773 

been analyzed by PBMs (center panel) and a table of pullouts (top and bottom panel) showing 774 

average (ME and HK) E-scores of the union of the top ten highly scoring 8-mers bound by at 775 

least one NHR within the selected motif cluster. 776 



 37

 777 

Figure 6-source data 6. Table showing 8-mer E-score profiles of T-box and DM TFs from 778 

C. elegans and other metazoans that have been analyzed by PBMs.   779 

 780 

Figure 9-source data 1. Table of motif enrichments –log10(p-values) in the promoters of 781 

gene set categories identified from KEGG pathway modules, Gene Ontology processes and 782 

tissue/developmental stage specific expression lists. 783 

 784 

Supplementary File 1. Comparison of CisBP TF collection with wTF2.0. Includes comments 785 

of overlaps and differences between two lists and whether each entry is likely a bona fide TF. 786 

 787 

Supplementary File 2. C. elegans curated motif collection. This spreadsheet contains the 788 

curated motif IDs for each C. elegans TF along with their source and experimental support. 789 

 790 

Supplementary File 3. Number of experiments required for complete coverage of human, 791 

fly and worm TF collections. This spreadsheet contains numbers of experiments needed for 792 

each DBD class to have complete coverage of the motif collection based on previously described 793 

DBD prediction thresholds. 794 

 795 

Supplementary File 4. List of primers and gene systhesis constructs used to obtain TF 796 

clones in this study. This spreadsheet contains primers used to clone TFs as well as gene 797 

synthesis constructs that were cloned in to the PBM plasmid backbone (Supplementary File 5). 798 

 799 

Supplementary File 5. PBM plasmid (pTH6838) backbone map.  Information on the 800 

expression vector used in PBM experiments. 801 
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