3,573 research outputs found

    A Method for Determining Optimum Re-entry Trajectories

    Get PDF
    Determining optimum atmospheric reentry trajectories using Pontryagin maximum principl

    Dynamical instabilities of Bose-Einstein condensates at the band-edge in one-dimensional optical lattices

    Get PDF
    We report on experiments that demonstrate dynamical instability in a Bose-Einstein condensate at the band-edge of a one-dimensional optical lattice. The instability manifests as rapid depletion of the condensate and conversion to a thermal cloud. We consider the collisional processes that can occur in such a system, and perform numerical modeling of the experiments using both a mean-field and beyond mean-field approach. We compare our numerical results to the experimental data, and find that the Gross-Pitaevskii equation is not able to describe this experiment. Our beyond mean-field approach, known as the truncated Wigner method, allows us to make quantitative predictions for the processes of parametric growth and thermalization that are observed in the laboratory, and we find good agreement with the experimental results.Comment: v2: Added several reference

    Biosensor-controlled gene therapy/drug delivery with nanoparticles for nanomedicine

    Get PDF
    Nanomedicine involves cell-by-cell regenerative medicine, either repairing cells one at a time or triggering apoptotic pathways in cells that are not repairable. Multilayered nanoparticle systems are being constructed for the targeted delivery of gene therapy to single cells. Cleavable shells containing targeting, biosensing, and gene therapeutic molecules are being constructed to direct nanoparticles to desired intracellular targets. Therapeutic gene sequences are controlled by biosensor-activated control switches to provide the proper amount of gene therapy on a single cell basis. The central idea is to set up gene therapy "nanofactories" inside single living cells. Molecular biosensors linked to these genes control their expression. Gene delivery is started in response to a biosensor detected problem; gene delivery is halted when the cell response indicates that more gene therapy is not needed

    Thermal activation of ferroelectric switching

    Get PDF
    By applying the theory of thermally activated nucleation to the switching of ferroelectric domains, a method is developed to experimentally obtain the value of both the activation enthalpy, ΔH, and activation volume, V*, for the thermally activated process involved in ferroelectric switching. The method was applied to the switching of a soft lead zirconate titanate and values of ΔH = (0.16±0.02) eV and V* = (1.62±0.16)×10−25 m3 were obtained at the coercive field. These values imply that the energy, ΔU, required for the formation of switching nuclei is mainly supplied by the work done by the electric field. A comparison of these values with those obtained from theoretical considerations suggests that the switching is achieved by the sideways expansion of nuclei formed at the domain boundaries in the form of low amplitude and long wavelength fluctuations of the domain walls

    Effect of the boundary layer upon the flow in a conical hypersonic nozzle

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76641/1/AIAA-2269-288.pd

    Multifunctional nanoparticles for drug/gene delivery in nanomedicine

    Get PDF
    Multifunctional nanoparticles hold great promise for drug/gene delivery. Multilayered nanoparticles can act as nanomedical systems with on-board "molecular programming" to accomplish complex multi-step tasks. For example, the targeting process has only begun when the nanosystem has found the correct diseased cell of interest. Then it must pass the cell membrane and avoid enzymatic destruction within the endosomes of the cell. Since the nanosystem is only about one millionth the volume of a human cell, for it to have therapeutic efficacy with its contained package, it must deliver that drug or gene to the appropriate site within the living cell. The successive delayering of these nanosystems in a controlled fashion allows the system to accomplish operations that would be difficult or impossible to do with even complex single molecules. In addition, portions of the nanosystem may be protected from premature degradation or mistargeting to non-diseased cells. All of these problems remain major obstacles to successful drug delivery with a minimum of deleterious side effects to the patient. This paper describes some of the many components involved in the design of a general platform technology for nanomedical systems. The feasibility of most of these components has been demonstrated by our group and others. But the integration of these interacting sub-components remains a challenge. We highlight four components of this process as examples. Each subcomponent has its own sublevels of complexity. But good nanomedical systems have to be designed/engineered as a full nanomedical system, recognizing the need for the other components

    Initial determination of the spins of the gluino and squarks at LHC

    Full text link
    In principle particle spins can be measured from their production cross sections once their mass is approximately known. The method works in practice because spins are quantized and cross sections depend strongly on spins. It can be used to determine, for example, the spin of the top quark. Direct application of this method to supersymmetric theories will have to overcome the challenge of measuring mass at the LHC, which could require high statistics. In this article, we propose a method of measuring the spins of the colored superpatners by combining rate information for several channels and a set of kinematical variables, without directly measuring their masses. We argue that such a method could lead to an early determination of the spin of gluino and squarks. This method can be applied to the measurement of spin of other new physics particles and more general scenarios.Comment: 23 pages, 8 figures, minor change

    Production and detection of relic gravitons in quintessential inflationary models

    Get PDF
    A large class of quintessential inflationary models, recently proposed by Peebles and Vilenkin, leads to post-inflationary phases whose effective equation of state is stiffer than radiation. The expected gravitational waves logarithmic energy spectra are tilted towards high frequencies and characterized by two parameters: the inflationary curvature scale at which the transition to the stiff phase occurs and the number of (non conformally coupled) scalar degrees of freedom whose decay into fermions triggers the onset of a gravitational reheating of the Universe. Depending upon the parameters of the model and upon the different inflationary dynamics (prior to the onset of the stiff evolution) the relic gravitons energy density can be much more sizeable than in standard inflationary models, for frequencies larger than 1 Hz. We estimate the required sensitivity for detection of the predicted spectral amplitude and show that the allowed region of our parameter space leads to a signal smaller (by one 1.5 orders of magnitude) than the advanced LIGO sensitivity at a frequency of 0.1 KHz. The maximal signal, in our context, is expected in the GHz region where the energy density of relic gravitons in critical units (i.e. h02ΩGWh_0^2 \Omega_{GW}) is of the order of 10−610^{-6}, roughly eight orders of magnitude larger than in ordinary inflationary models. Smaller detectors (not necessarily interferometers) can be relevant for detection purposes in the GHz frequency window. We suggest/speculate that future measurements through microwave cavities can offer interesting perspectives.Comment: 24 pages in Revtex style, 7 figure

    Substitutional doping of hybrid organic-inorganic perovskite crystals for thermoelectrics

    Get PDF
    Hybrid organic–inorganic perovskites have generated considerable research interest in the field of optoelectronic devices. However, there have been significantly fewer reports of their thermoelectric properties despite some promising early results. In this article, we investigate the thermoelectric properties of bismuth-doped CH3NH3PbBr3 (MAPbBr3) single crystals. The high-quality Bi-doped crystals were synthesized by inverse temperature crystallization and it was found that Bi substitutes onto the B-site of the ABX3 perovskite lattice of MAPbBr3 crystals with very little distortion of the crystal structure. Bi doping does not significantly alter the thermal conductivity but dramatically enhances the electrical conductivity of MAPbBr3, increasing the charge carrier density by more than three orders of magnitude. We obtained a negative Seebeck coefficient of −378 μV K−1 for 15% (x = 0.15) Bi-doped MAPb(1−x)BixBr3 confirming n-type doping and also measured the figure of merit, ZT. This work highlights routes towards controlled substitutional doping of halide perovskites to optimise them for thermoelectric applications
    • …
    corecore