21 research outputs found

    Proteins recruited by SH3 domains of Ruk/CIN85 adaptor identified by LC-MS/MS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ruk/CIN85 is a mammalian adaptor molecule with three SH3 domains. Using its SH3 domains Ruk/CIN85 can cluster multiple proteins and protein complexes, and, consequently, facilitates organisation of elaborate protein interaction networks with diverse regulatory roles. Previous research linked Ruk/CIN85 with the regulation of vesicle-mediated transport and cancer cell invasiveness. Despite the recent findings, precise molecular functions of Ruk/CIN85 in these processes remain largely elusive and further research is hampered by a lack of complete lists of its partner proteins.</p> <p>Results</p> <p>In the present study we employed a LC-MS/MS-based experimental pipeline to identify a considerable number (over 100) of proteins recruited by the SH3 domains of Ruk/CIN85 <it>in vitro</it>. Most of these identifications are novel Ruk/CIN85 interaction candidates. The identified proteins have diverse molecular architectures and can interact with other proteins, as well as with lipids and nucleic acids. Some of the identified proteins possess enzymatic activities. Functional profiling analyses and literature mining demonstrate that many of the proteins recruited by the SH3 domains of Ruk/CIN85 identified in this work were involved in the regulation of membranes and cytoskeletal structures necessary for vesicle-mediated transport and cancer cell invasiveness. Several groups of the proteins were also associated with few other cellular processes not previously related to Ruk/CIN85, most prominently with cell division.</p> <p>Conclusion</p> <p>Obtained data support the notion that Ruk/CIN85 regulates vesicle-mediated transport and cancer cell invasiveness through the assembly of multimeric protein complexes governing coordinated remodelling of membranes and underlying cytoskeletal structures, and imply its important roles in formation of coated vesicles and biogenesis of invadopodia. In addition, this study points to potential involvement of Ruk/CIN85 in other cellular processes, chiefly in cell division.</p

    Myosin VI in PC12 cells plays important roles in cell migration and proliferation but not in catecholamine secretion

    Get PDF
    Myosin VI (MVI) is the only known myosin walking towards minus end of actin filaments and is believed to play distinct role(s) than other myosins. We addressed a role of this unique motor in secretory PC12 cells, derived from rat adrenal medulla pheochromocytoma using cell lines with reduced MVI synthesis (produced by means of siRNA). Decrease of MVI expression caused severe changes in cell size and morphology, and profound defects in actin cytoskeleton organization and Golgi structure. Also, significant inhibition of cell migration as well as cell proliferation was observed. Flow cytometric analysis revealed that MVI-deficient cells were arrested in G0/G1 phase of the cell cycle but did not undergo increased senescence as compared with control cells. Also, neither polyploidy nor aneuploidy were detected. Surprisingly, no significant effect on noradrenaline secretion was observed. These data indicate that in PC12 cells MVI is involved in cell migration and proliferation but is not crucial for stimulation-dependent catecholamine release

    Emerging roles of Ruk/CIN85 in vesicle-mediated transport, adhesion, migration and malignancy

    No full text
    Ruk/CIN85 is an adaptor protein. Similar to many other proteins of this type, Ruk/CIN85 is known to take part in multiple cellular processes including signal transduction, vesicle-mediated transport, cytoskeleton remodelling, programmed cell death and viral infection. Recent studies have also revealed the potential importance of Ruk/CIN85 in cancer cell invasiveness. In this review we summarize the various roles of this protein as well as the potential contribution of Ruk/CIN85 to malignancy and the invasiveness of cancer cells. In the last section of the paper we also speculate on the utility of Ruk/CIN85 as a target for novel anti-cancer therapies

    Myosin VI Localization and Expression in Striated Muscle Pathology

    No full text
    We study the solutions of the matrix equation Sexp(S)=AS\exp(S) = A. Our motivation comes from the study of systems of delay differential equations y(t)=Ay(t1)y'(t) = A y(t-1), which occur in some models of practical interest, especially in mathematical biology. This paper concentrates on the distinction between \emph{evaluating a matrix function} and \emph{solving a matrix equation}. In particular, it shows that the matrix Lambert WW function evaluated at the matrix AA does not represent all possible solutions of Sexp(S)=AS\exp(S) = A. These results can easily be extended to more general matrix equations

    Myosin VI in the nucleus of neurosecretory PC12 cells: Stimulation-dependent nuclear translocation and interaction with nuclear proteins<sup>*</sup>

    No full text
    <p>Myosin VI (MVI) is a unique actin-based motor protein moving towards the minus end of actin filaments, in the opposite direction than other known myosins. Besides well described functions of MVI in endocytosis and maintenance of Golgi apparatus, there are few reports showing its involvement in transcription. We previously demonstrated that in neurosecretory PC12 cells MVI was present in the cytoplasm and nucleus, and its depletion caused substantial inhibition of cell migration and proliferation. Here, we show an increase in nuclear localization of MVI upon cell stimulation, and identification of potential nuclear localization (NLS) and nuclear export (NES) signals within MVI heavy chain. These signals seem to be functional as the MVI nuclear presence was affected by the inhibitors of nuclear import (ivermectin) and export (leptomycin B). In nuclei of stimulated cells, MVI colocalized with active RNA polymerase II, BrUTP-containing transcription sites and transcription factor SP1 as well as SC35 and PML proteins, markers of nuclear speckles and PML bodies, respectively. Mass spectrometry analysis of samples of a GST-pull-down assay with the MVI tail domain as a “bait” identified several new potential MVI binding partners. Among them are proteins involved in transcription and post-transcriptional processes. We confirmed interaction of MVI with heterogeneous nuclear ribonucleoprotein U (hnRNPU) and nucleolin, proteins involved in pre-mRNA binding and transport, and nucleolar function, respectively. Our data provide an insight into mechanisms of involvement of MVI in nuclear processes <i>via</i> interaction with nuclear proteins and support a notion for important role(s) for MVI in gene expression.</p

    Two Desmin Gene Mutations Associated with Myofibrillar Myopathies in Polish Families

    No full text
    <div><p>Desmin is a muscle-specific intermediate filament protein which forms a network connecting the sarcomere, T tubules, sarcolemma, nuclear membrane, mitochondria and other organelles. Mutations in the gene coding for desmin (<i>DES</i>) cause skeletal myopathies often combined with cardiomyopathy, or isolated cardiomyopathies. The molecular pathomechanisms of the disease remain ambiguous. Here, we describe and comprehensively characterize two <i>DES</i> mutations found in Polish patients with a clinical diagnosis of desminopathy. The study group comprised 16 individuals representing three families. Two mutations were identified: a novel missense mutation (Q348P) and a small deletion of nine nucleotides (A357_E359del), previously described by us in the Polish population. A common ancestry of all the families bearing the A357_E359del mutation was confirmed. Both mutations were predicted to be pathogenic using a bioinformatics approach, including molecular dynamics simulations which helped to rationalize abnormal behavior at molecular level. To test the impact of the mutations on <i>DES</i> expression and the intracellular distribution of desmin muscle biopsies were investigated. Elevated desmin levels as well as its atypical localization in muscle fibers were observed. Additional staining for M-cadherin, α-actinin, and myosin heavy chains confirmed severe disruption of myofibrill organization. The abnormalities were more prominent in the Q348P muscle, where both small atrophic fibers as well large fibers with centrally localized nuclei were observed. We propose that the mutations affect desmin structure and cause its aberrant folding and subsequent aggregation, triggering disruption of myofibrils organization.</p></div

    Histogram of helix bending angle at residue 348.

    No full text
    <p>WT helix is naturally bent, about 175°, in a dimer coiled-coil conformation. For the Q348P mutation the maximum of the helix bending angle is nearly the same, about 172°, but a long tail of this plot with a local maximum at 158° indicates a high flexibility of helix at this residue in the mutant structure. The structure of A357-E359del also demonstrates a higher flexibility than WT.</p
    corecore