6 research outputs found

    Optical pump–terahertz probe study of HR GaAs:Cr and SI GaAs:El2 structures with long charge carrier lifetimes

    Get PDF
    The time dynamics of nonequilibrium charge carrier relaxation processes in SI GaAs:EL2 (semi-insulating gallium arsenide compensated with EL2 centers) and HR GaAs:Cr (high-resistive gallium arsenide compensated with chromium) were studied by the optical pump–terahertz probe technique. Charge carrier lifetimes and contributions from various recombination mechanisms were determined at different injection levels using the model, which takes into account the influence of surface and volume Shockley–Read–Hall (SRH) recombination, interband radiative transitions and interband and trap-assisted Auger recombination. It was found that, in most cases for HR GaAs:Cr and SI GaAs:EL2, Auger recombination mechanisms make the largest contribution to the recombination rate of nonequilibrium charge carriers at injection levels above ~(0.5–3)·1018 cm−3, typical of pump–probe experiments. At a lower photogenerated charge carrier concentration, the SRH recombination prevails. The derived charge carrier lifetimes, due to the SRH recombination, are approximately 1.5 and 25 ns in HR GaAs:Cr and SI GaAs:EL2, respectively. These values are closer to but still lower than the values determined by photoluminescence decay or charge collection efficiency measurements at low injection levels. The obtained results indicate the importance of a proper experimental data analysis when applying terahertz time-resolved spectroscopy to the determination of charge carrier lifetimes in semiconductor crystals intended for the fabrication of devices working at lower injection levels than those at measurements by the optical pump–terahertz probe technique. It was found that the charge carrier lifetime in HR GaAs:Cr is lower than that in SI GaAs:EL2 at injection levels > 1016 cm−3.В ст. ошибочно: Irina A. Kolesnikov

    Effect of gallium arsenide charge carrier life time on the generation and detection efficiency of continuous and pulsed terahertz radiation

    No full text
    A configuration and test samples of photoconductive dipole antennas based on SI-GaAs:Cr and LT-GaAs for generation and detection of terahertz radiation are developed. Their operating characteristics in the pulsed mode and in the mode of operation as photomixers are experimentally investigated

    Optical Absorption, Photocarrier Recombination Dynamics and Terahertz Dielectric Properties of Electron-Irradiated GaSe Crystals

    No full text
    Optical absorption spectra of 9 MeV electron-irradiated GaSe crystals were studied. Two absorption bands with the low-photon-energy threshold at 1.35 and 1.73 eV (T = 300 K) appeared in the transparency region of GaSe after the high-energy-electron irradiation. The observed absorption bands were attributed to the defect states induced by Ga vacancies in two charge states, having the energy positions at 0.23 and 0.61 eV above the valence band maximum at T = 300 K. The optical pump-terahertz probe technique (OPTP) was employed to study the dark and photoexcited terahertz conductivity and charge carrier recombination dynamics at two-photon excitation of as-grown and 9 MeV electron-irradiated GaSe crystals. The measured values of the differential terahertz transmission at a specified photoexcitation condition were used to extract the terahertz charge carrier mobilities. The determined terahertz charge carrier mobility values were ~46 cm2/V·s and ~14 cm2/V·s for as-grown and heavily electron-irradiated GaSe crystals, respectively. These are quite close to the values determined from the Lorentz–Drude–Smith fitting of the measured dielectric constant spectra. The photo-injection-level-dependent charge carrier lifetimes were determined from the measured OPTP data, bearing in mind the model injection-level dependencies of the recombination rates governed by interband and trap-assisted Auger recombination, bulk and surface Shockley–Read–Hall (SRH) recombination and interband radiative transitions in the limit of a high injection level. It was found that GaSe possesses a long charge carrier lifetime (a~1.9 × 10−6 ps−1, b~2.7 × 10−21 cm3ps−1 and c~1.3 × 10−37 cm6ps−1), i.e., τ~0.53 μs in the limit of a relatively low injection, when the contribution from SRH recombination is dominant. The electron irradiation of as-grown GaSe crystals reduced the charge carrier lifetime at a high injection level due to Auger recombination through radiation-induced defects. It was found that the terahertz spectra of the dielectric constants of as-grown and electron-irradiated GaSe crystals can be fitted with acceptable accuracy using the Lorentz model with the Drude–Smith term accounting for the free-carrier conductivity

    Methods of preparation and temporal stability of gase and InSe nanolayers

    No full text
    GaSe and InSe nanolayers were obtained by mechanical exfoliation and physical vapor deposition methods on silicon substrates. Employing atomic force microscopy the surface morphology and thickness of obtained InSe and GaSe nanolayers were studied, as well as their temporal stability. The observed spectral positions of the Raman peaks were in agreement with the positions of the peaks known for bulk and nanolayered InSe and GaSe sample

    The visibility and stability of GaSe nanoflakes of about 50 layers on SiO2/Si wafers

    Get PDF
    GaSe nanoflakes on silicon substrates covered by SiO2 films are prepared by mechanical exfoliation from the bulk Bridgman-grown GaSe crystals using a scotch tape. The thickness of SiO2 films on Si substrates providing the highest optical contrast for observation of GaSe flakes is estimated by taking into account the spectral sensitivity of a commercial CMOS camera and broadband visible light illumination. According to our estimations, the optimal SiO2 thickness is ∼126 nm for the visualization of GaSe flakes of 1–3 layers and ∼100 nm for the flakes of 40–70 layers. The obtained nanoflakes are investigated by optical and atomic force microscopy and Raman spectroscopy. The observed spectral positions of the Raman peaks are in agreement with the positions of the peaks known for bulk and nanolayered GaSe samples. It is found that the 50 nm thick flakes are stable but are covered by oxide structures with lateral size about 100 nm and height ∼5 nm after ∼9 months exposure to ambient atmosphere
    corecore