4 research outputs found

    Event Index - an LHCb Event Search System

    Full text link
    During LHC Run 1, the LHCb experiment recorded around 101110^{11} collision events. This paper describes Event Index - an event search system. Its primary function is to quickly select subsets of events from a combination of conditions, such as the estimated decay channel or number of hits in a subdetector. Event Index is essentially Apache Lucene optimized for read-only indexes distributed over independent shards on independent nodes.Comment: Report for the proceedings of the CHEP-2015 conferenc

    Rare Variants in Primary Immunodeficiency Genes and Their Functional Partners in Severe COVID-19

    No full text
    The development of severe COVID-19, which is a complex multisystem disease, is thought to be associated with many genes whose action is modulated by numerous environmental and genetic factors. In this study, we focused on the ideas of the omnigenic model of heritability of complex traits, which assumes that a small number of core genes and a large pool of peripheral genes expressed in disease-relevant tissues contribute to the genetics of complex traits through interconnected networks. We hypothesized that primary immunodeficiency disease (PID) genes may be considered as core genes in severe COVID-19, and their functional partners (FPs) from protein–protein interaction networks may be considered as peripheral near-core genes. We used whole-exome sequencing data from patients aged ≤ 45 years with severe (n = 9) and non-severe COVID-19 (n = 11), and assessed the cumulative contribution of rare high-impact variants to disease severity. In patients with severe COVID-19, an excess of rare high-impact variants was observed at the whole-exome level, but maximal association signals were detected for PID + FP gene subsets among the genes intolerant to LoF variants, haploinsufficient and essential. Our exploratory study may serve as a model for new directions in the research of host genetics in severe COVID-19

    Serial Changes in Blood-Cell-Count-Derived and CRP-Derived Inflammatory Indices of COVID-19 Patients

    No full text
    The aim of the study was to investigate the serial changes in inflammatory indices derived from blood cell counts and C-reactive protein (CRP) levels in COVID-19 patients with good and poor outcomes. We retrospectively analyzed the serial changes in the inflammatory indices in 169 COVID-19 patients. Comparative analyses were performed on the first and last days of a hospital stay or death and serially from day 1 to day 30 from the symptom onset. On admission, non-survivors had higher CRP to lymphocytes ratio (CLR) and multi-inflammatory index (MII) values than survivors, while at the time of discharge/death, the largest differences were found for the neutrophil to lymphocyte ratio (NLR), systemic inflammation response index (SIRI), and MII. A significant decrease in NLR, CLR, and MII by the time of discharge was documented in the survivors, and a significant increase in NLR was documented in the non-survivors. The NLR was the only one that remained significant from days 7–30 of disease in intergroup comparisons. The correlation between the indices and the outcome was observed starting from days 13–15. The changes in the index values over time proved to be more helpful in predicting COVID-19 outcomes than those measured on admission. The values of the inflammatory indices could reliably predict the outcome no earlier than days 13–15 of the disease
    corecore