54 research outputs found

    Adjuvant radiotherapy for primary breast cancer in BRCA1 and BRCA2 mutation carriers and risk of contralateral breast cancer with special attention to patients irradiated at younger age

    Get PDF
    The purpose of this study was to estimate the influence of adjuvant radiotherapy for primary breast cancer (BC) on the risk of contralateral BC (CBC) in BRCA1 or BRCA2(BRCA1/2) mutation carriers, with special attention to patients irradiated at age younger than 40 years. Additionally, tendencies in locoregional treatments and rates of contralateral risk-reducing mastectomy over time were explored. In this retrospective cohort study, 691 BRCA1/2-associated BC patients treated between 1980 and 2013 were followed from diagnosis until CBC or censoring event including ipsilateral BC recurrence, distant metastasis, contralateral risk-reducing mastectomy, other invasive cancer diagnosis, death, or loss to follow up. Hazard ratios (HR) for CBC associated with radiotherapy were estimated using Cox regression. Median follow-up time was 8.6 years [range 0.3–34.3 years]. No association between radiotherapy for primary BC and risk of CBC was found, neither in the total population (HR 0.82, 95 % CI 0.45–1.49) nor in the subgroup of patients younger than 40 years at primary diagnosis (HR 1.36, 95 % CI 0.60–3.09). During follow-up, the number of patients at risk decreased substantially since a large proportion of patients were censored after contralateral risk-reducing mastectomy or BC recurrence. Over the years, increasing preference for mastectomy without radiotherapy compared to breast-conserving surgery with radiotherapy was found ranging from less than 30 % in 1995 to almost 50 % after 2010. The rate of contralateral risk-reducing mastectomy increased over the years from less than 40 % in 1995 to more than 60 % after 2010. In this cohort of BRCA1/2-associated BC patients, no association between radiotherapy for primary BC and risk of CBC was observed in the total group, nor in the patients irradiated before the age of 40 years. The number of patients at risk after 10 and 15 years of follow-up, however, was too small to definitively exclude harmful effects of adjuvant radiotherapy

    The association of polymorphisms in hormone metabolism pathway genes, menopausal hormone therapy, and breast cancer risk: a nested case-control study in the California Teachers Study cohort

    Get PDF
    Abstract Introduction The female sex steroids estrogen and progesterone are important in breast cancer etiology. It therefore seems plausible that variation in genes involved in metabolism of these hormones may affect breast cancer risk, and that these associations may vary depending on menopausal status and use of hormone therapy. Methods We conducted a nested case-control study of breast cancer in the California Teachers Study cohort. We analyzed 317 tagging single nucleotide polymorphisms (SNPs) in 24 hormone pathway genes in 2746 non-Hispanic white women: 1351 cases and 1395 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by fitting conditional logistic regression models using all women or subgroups of women defined by menopausal status and hormone therapy use. P values were adjusted for multiple correlated tests (P ACT). Results The strongest associations were observed for SNPs in SLCO1B1, a solute carrier organic anion transporter gene, which transports estradiol-17β-glucuronide and estrone-3-sulfate from the blood into hepatocytes. Ten of 38 tagging SNPs of SLCO1B1 showed significant associations with postmenopausal breast cancer risk; 5 SNPs (rs11045777, rs11045773, rs16923519, rs4149057, rs11045884) remained statistically significant after adjusting for multiple testing within this gene (P ACT = 0.019-0.046). In postmenopausal women who were using combined estrogen-progestin therapy (EPT) at cohort enrollment, the OR of breast cancer was 2.31 (95% CI = 1.47-3.62) per minor allele of rs4149013 in SLCO1B1 (P = 0.0003; within-gene P ACT = 0.002; overall P ACT = 0.023). SNPs in other hormone pathway genes evaluated in this study were not associated with breast cancer risk in premenopausal or postmenopausal women. Conclusions We found evidence that genetic variation in SLCO1B1 is associated with breast cancer risk in postmenopausal women, particularly among those using EPT

    Genetic variants on chromosome 5p12 are associated with risk of breast cancer in African American women: the Black Women's Health Study

    No full text
    Two single nucleotide polymorphisms (SNPs), rs4415084, and rs10941679 on chromosome 5p12 were associated with risk of breast cancer in a recent genome-wide association study (GWAS) of women of European ancestry. Both SNPs are located in a large high-LD region and the causal variant(s) are still unknown. We conducted a nested case-control study in a cohort of African American women to replicate and narrow the region carrying the causal variant(s). We evaluated 14 tagging SNPs in a 98 kb LD block surrounding the index SNPs in 886 breast cancer cases and 1,089 controls from the Black Women's Health Study. We used the Cochran-Armitage trend test to assess association with breast cancer risk. Odds ratios were derived from logistic regression analyses adjusted for potential confounders including percent European admixture. We confirmed the reported association of rs4415084 SNP with overall risk of breast cancer (P = 0.06), and, as in the original study, observed a stronger association with estrogen receptor positive tumors (P = 0.03). We identified four other SNPs (rs6451770, rs12515012, rs13156930, and rs16901937) associated with risk of breast cancer at the nominal alpha value of 0.05; all of them were located in a 59 kb HapMap YRI LD block. After correction for multiple testing, the association with SNP rs16901937 remained significant (P permutated = 0.038). The G allele was associated with a 21% increased risk of breast cancer overall and with a 32% increase in tumors positive for both estrogen and progesterone receptors. The present results from an African ancestry (AA) population confirm the presence of breast cancer susceptibility genetic variants in the chromosome 5p12 region. We successfully used the shorter range of LD in our AA sample to refine the localization of the putative causal variant
    corecore