463 research outputs found

    The Emperor's new clothes: PDE5 and the heart

    Get PDF
    Phosphodiesterase-5 (PDE5) is highly expressed in the pulmonary vasculature, but its expression in the myocardium is controversial. Cyclic guanosine monophosphate (cGMP) activates protein kinase G (PKG), which has been hypothesized to blunt cardiac hypertrophy and negative remodeling in heart failure. Although PDE5 has been suggested to play a significant role in the breakdown of cGMP in cardiomyocytes and hence PKG regulation in the myocardium, the RELAX trial, which tested effect of PDE5 inhibition on exercise capacity in patients with heart failure with preserved ejection fraction (HFpEF) failed to show a beneficial effect. These results highlight the controversy regarding the role and expression of PDE5 in the healthy and failing heart. This study used one- and two-dimensional electrophoresis and Western blotting to examine PDE5 expression in mouse (before and after trans-aortic constriction), dog (control and HFpEF) as well as human (healthy and failing) heart. We were unable to detect PDE5 in any cardiac tissue lysate, whereas PDE5 was present in the murine and bovine lung samples used as positive controls. These results indicate that if PDE5 is expressed in cardiac tissue, it is present in very low quantities, as PDE5 was not detected in either humans or any model of heart failure examined. Therefore in cardiac muscle, it is unlikely that PDE5 is involved the regulation of cGMP-PKG signaling, and hence PDE5 does not represent a suitable drug target for the treatment of cardiac hypertrophy. These results highlight the importance of rigorous investigation prior to clinical trial design

    Pulmonary Hypertension in Elderly Patients with Diastolic Dysfunction and Preserved Ejection Fraction

    Get PDF
    Abstract: Purpose: Patients with diastolic dysfunction may have a disproportionate degree of elevation in pulmonary pressure, particularly in the elderly. Higher pulmonary vascular resistance in the elderly patients with heart failure but preserved ejection fraction suggests that beyond the post-capillary contribution of pulmonary venous congestion, a pre-capillary component of pulmonary arterial hypertension occurs. We aim to identify if pulmonary vascular resistance in elderly patients with diastolic dysfunction is disproportionately higher than patients with systolic dysfunction independent of filling pressures. Methods: 389 patients identified retrospectively between 2003- 2010; elderly with preserved ejection fraction, elderly with depressed ejection fraction, and primary arterial hypertension who underwent right-heart catheterization at Rush University. Results: No significant difference in pulmonary vascular resistance between systolic and diastolic dysfunction. The mean difference in pulmonary vascular resistance was not statistically significant at 0.40 mmHg·min/l (95 % CI-3.03 to 3.83) with similar left ventricular filling pressures with mean difference of 3.38 mmHg (95 % CI,-1.27 to 8.02). When adjusted for filling pressures, there remained no difference in pulmonary vascular resistance for systolic and diastolic dysfunction. The mean pulmonary vascular resistance is more elevated in systolic heart failure compared to diastolic heart failure with means 3.13 mmHg·min/l and 3.52 mmHg·min/l, respectively

    Pasteurellaceae ComE1 Proteins Combine the Properties of Fibronectin Adhesins and DNA Binding Competence Proteins

    Get PDF
    A novel fibronectin-binding protein from Pasteurella multocida (PM1665) that binds to the fibronectin type III9-10 modules via two helix-hairpin-helix motifs has recently been described [1]. This protein shares homology with competence-related DNA-binding and uptake proteins (ComEA and ComE) from Gram-positive and Gram-negative bacteria. Here, we show that recombinant PM1665 (now designated ComE1) also binds to DNA through the same helix-hairpin-helix motifs required for fibronectin-binding. This binding to DNA is non sequence-specific and is confined to double-stranded DNA. We have cloned and expressed ComE1 proteins from five members of the Pasteurellaceae in order to further investigate the function(s) of these proteins. When expressed as recombinant GST-fusion proteins, all of the homologues bound both to fibronectin and to double-stranded DNA. Inactivation of the gene encoding the ComE1 homologue in Actinobacillus pleuropneumoniae indicates major roles for these proteins in at least two processes: natural transformation, and binding of bacteria to fibronectin

    Marsh macrophyte responses to inundation anticipate impacts of sea-level rise and indicate ongoing drowning of North Carolina marshes

    Get PDF
    In situ persistence of coastal marsh habitat as sea level rises depends on whether macrophytes induce compensatory accretion of the marsh surface. Experimental planters in two North Carolina marshes served to expose two dominant macrophyte species to six different elevations spanning 0.75 m (inundation durations 0.4–99 %). Spartina alterniflora and Juncus roemerianus exhibited similar responses—with production in planters suggesting initial increases and then demonstrating subsequent steep declines with increasing inundation, conforming to a segment of the ecophysiological parabola. Projecting inundation levels experienced by macrophytes in the planters onto adjacent marsh platforms revealed that neither species occupied elevations associated with increasing production. Declining macrophyte production with rising seas reduces both bioaccumulation of roots below-ground and baffle-induced sedimentation above-ground. By occupying only descending portions of the parabola, macrophytes in central North Carolina marshes are responding to rising water levels by progressive declines in production, ultimately leading to marsh drowning

    Abnormal shortened diastolic time length at increasing heart rates in patients with abnormal exercise-induced increase in pulmonary artery pressure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The degree of pulmonary hypertension is not independently related to the severity of left ventricular systolic dysfunction but is frequently associated with diastolic filling abnormalities. The aim of this study was to assess diastolic times at increasing heart rates in normal and in patients with and without abnormal exercise-induced increase in pulmonary artery pressure (PASP). Methods. We enrolled 109 patients (78 males, age 62 ± 13 years) referred for exercise stress echocardiography and 16 controls. The PASP was derived from the tricuspid Doppler tracing. A cut-off value of PASP ≥ 50 mmHg at peak stress was considered as indicative of abnormal increase in PASP. Diastolic times and the diastolic/systolic time ratio were recorded by a precordial cutaneous force sensor based on a linear accelerometer.</p> <p>Results</p> <p>At baseline, PASP was 30 ± 5 mmHg in patients and 25 ± 4 in controls. At peak stress the PASP was normal in 95 patients (Group 1); 14 patients (Group 2) showed an abnormal increase in PASP (from 35 ± 4 to 62 ± 12 mmHg; P < 0.01). At 100 bpm, an abnormal (< 1) diastolic/systolic time ratio was found in 0/16 (0%) controls, in 12/93 (13%) Group 1 and 7/14 (50%) Group 2 patients (p < 0.05 between groups).</p> <p>Conclusion</p> <p>The first and second heart sound vibrations non-invasively monitored by a force sensor are useful for continuously assessing diastolic time during exercise. Exercise-induced abnormal PASP was associated with reduced diastolic time at heart rates beyond 100 beats per minute.</p
    corecore