49 research outputs found

    Context and strain-dependent behavioral response to stress

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Imprinting and expression of Dio3os mirrors Dio3 in rat

    Get PDF
    Genomic imprinting, the preferential expression of maternal or paternal alleles of imprinted genes, is often maintained through expression of imprinted long non-coding (lnc) “antisense” RNAs. These may overlap imprinted transcripts, and are expressed from the opposite allele. Previously we have described brain region-specific imprinted expression of the Dio3 gene in rat, which is preferentially modified by fetal ethanol exposure. The Dio3os (opposite strand) transcript is transcribed in opposite orientation to Dio3 in mouse and human, partially overlaps the Dio3 promoter, and mirrors total Dio3 developmental expression levels. Here, we present that the rat Dio3os transcript(s) exhibits brain region-specific imprinted expression patterns similar to those of Dio3. Rat Dio3os transcript expression is also similarly modified by fetal ethanol exposure. Uniquely, both Dio3 and Dio3os expression occur on the same, rather than opposite, alleles, as determined by strand-specific RT-PCR. Future studies will require direct manipulation of the Dio3os transcript to determine whether the novel paralleling of total and allele-specific expression patterns of this sense/antisense imprinted gene pair reflects an as-yet undefined regulatory mechanism for lncRNA mediated tissue-specific imprinted expression, or rather is a consequence of a more straightforward, but previously undescribed transcriptional coregulation process

    Whole genome sequencing of nearly isogenic WMI and WLI inbred rats identifies genes potentially involved in depression and stress reactivity

    Get PDF
    The WMI and WLI inbred rats were generated from the stress-prone, and not yet fully inbred, Wistar Kyoto (WKY) strain. These were selected using bi-directional selection for immobility in the forced swim test and were then sib-mated for over 38 generations. Despite the low level of genetic diversity among WKY progenitors, the WMI substrain is significantly more vulnerable to stress relative to the counter-selected WLI strain. Here we quantify numbers and classes of genomic sequence variants distinguishing these substrains with the long term goal of uncovering functional and behavioral polymorphism that modulate sensitivity to stress and depression-like phenotypes. DNA from WLI and WMI was sequenced using Illumina xTen, IonTorrent, and 10X Chromium linked-read platforms to obtain a combined coverage of ~ 100X for each strain. We identified 4,296 high quality homozygous SNPs and indels between the WMI and WLI. We detected high impact variants in genes previously implicated in depression (e.g. Gnat2), depression-like behavior (e.g. Prlr, Nlrp1a), other psychiatric disease (e.g. Pou6f2, Kdm5a, Reep3, Wdfy3), and responses to psychological stressors (e.g. Pigr). High coverage sequencing data confirm that the two substrains are nearly coisogenic. Nonetheless, the small number of sequence variants contributes to numerous well characterized differences including depression-like behavior, stress reactivity, and addiction related phenotypes. These selected substrains are an ideal resource for forward and reverse genetic studies using a reduced complexity cross

    Thyroid Function in Pregnant Women With Moderate to Severe Alcohol Consumption Is Related to Infant Developmental Outcomes.

    Get PDF
    INTRODUCTION: Fetal alcohol spectrum disorders (FASD) have an estimated global prevalence of 2-5% of births, but prevalence is reported to be as high as 15.5% for FASD in certain high-risk communities in South Africa. Preclinical studies demonstrate that alcohol consumption during pregnancy interferes with thyroid hormone availability and function and negatively impacts exposed offspring. Very little is currently reported on this phenomenon in humans. METHODS: This pilot study was embedded in the Drakenstein Child Health Study, a multi-disciplinary longitudinal birth cohort study investigating the early biological and psychosocial determinants of child health in South Africa. Twenty one mothers and their children with moderate-severe prenatal alcohol exposure (PAE) and 19 mothers and their children with no alcohol exposure were investigated. Maternal exposure history and blood samples were collected in mid-pregnancy and analyzed for serum-free thyroxin (FT4), free triiodothyronine (FT3), and thyroid stimulating hormone (TSH). Children were assessed with formally measured growth parameters and development was evaluated using the Bayley III Scales of Infant and Toddler Development (BSID III) at 6 and 24?months of age. RESULTS: While there were no significant differences in serum TSH and FT4 between groups, FT3 levels were significantly higher in mothers with moderate-severe prenatal alcohol use. In abstinent pregnant women, levels of FT4 were significantly correlated with infants' scores on cognitive measures at 6 and 24?months of age and with levels of gross motor skills at 24?months. However, in mothers with alcohol use, FT4 levels were not correlated with any cognitive or motor skills, but FT3 levels were significantly associated with scores on children's social-emotional development at 24?months of age. DISCUSSION: Thyroid function in PAE is sufficiently disrupted to lead to alterations in serum FT3 levels. The contrast in findings between PAE and abstinent dyads in their association of maternal thyroid function and infant development further suggests that such disruption is present and may contribute to adverse neurodevelopment. Further work is needed to determine the relationship between peripheral thyroid indices during pregnancy and neurodevelopmental outcomes in the context of PAE

    Genetic Model to Study the Co-Morbid Phenotypes of Increased Alcohol Intake and Prior Stress-Induced Enhanced Fear Memory

    Get PDF
    Posttraumatic Stress Disorder (PTSD) is a complex illness, frequently co-morbid with depression, caused by both genetics, and the environment. Alcohol Use Disorder (AUD), which also co-occurs with depression, is often co-morbid with PTSD. To date, very few genes have been identified for PTSD and even less for PTSD comorbidity with AUD, likely because of the phenotypic heterogeneity seen in humans, combined with each gene playing a relatively small role in disease predisposition. In the current study, we investigated whether a genetic model of depression-like behavior, further developed from the depression model Wistar Kyoto (WKY) rat, is a suitable vehicle to uncover the genetics of co-morbidity between PTSD and AUD. The by-now inbred WKY More Immobile (WMI) and the WKY Less Immobile (WLI) rats were generated from the WKY via bidirectional selective breeding using the forced swim test, a measure of despair-like behavior, as the functional selector. The colonies of the WMIs that show despair-like behavior and the control strain showing less or no despair-like behavior, the WLI, are maintained with strict inbreeding over 40 generations to date. WMIs of both sexes intrinsically self-administer more alcohol than WLIs. Alcohol self-administration is increased in the WMIs without sucrose fading, water deprivation or any prior stress, mimicking the increased voluntary alcohol-consumption of subjects with AUD. Prior Stress-Enhanced Fear Learning (SEFL) is a model of PTSD. WMI males, but not females, show increased SEFL after acute restraint stress in the context-dependent fear conditioning paradigm, a sexually dimorphic pattern similar to human data. Plasma corticosterone differences between stressed and not-stressed WLI and WMI male and female animals immediately prior to fear conditioning predict SEFL results. These data demonstrate that the WMI male and its genetically close, but behaviorally divergent control the WLI male, would be suitable for investigating the underlying genetic basis of comorbidity between SEFL and alcohol self-administration

    Novel polymorphisms within the Dlk1-Dio3 imprinted locus in rat: a putative genetic basis for strain-specific allelic gene expression

    Get PDF
    The imprinted iodothyronine deiodinase-III (Dio3) thyroid hormone metabolizing gene exhibits paternal expression in most fetal tissues, yet exhibits aberrant, maternal expression in the hippocampus in F1 offspring of Sprague Dawley (SD) x Brown Norway (BN) rats. The maternal hippocampal expression is associated with lower Dio3 mRNA levels specifically in the hippocampus. Here, we tested the hypothesis that genetic polymorphisms between the SD and BN parent strains cause this aberrant allelic Dio3 expression and contribute to behavioral sequelae of higher thyroid hormone levels locally in the hippocampus, including anxiety-related behavior. We mapped and sequenced the Dio3 gene and several previously unmapped regions in the Dlk1-Dio3 locus that could regulate imprinting of the Dio3 gene. In the Dio3 promoter we identified four novel polymorphisms between the BN and SD strains. Next we took advantage of the fact that the Long Evans (LE) strain exhibits identical polymorphisms as the SD strain in the region 5’ and including the Dio3 gene. By reciprocally crossing LE and BN strains we tested the relationship among Dio3 promoter region polymorphisms and Dio3 mRNA expression in the hippocampus. Aberrant strain-specific hippocampal Dio3 allelic expression replicated in the LE-BN reciprocal crosses, suggesting that hippocampal-specific imprinting of the Dio3 gene is not the result of a unique genetic or epigenetic characteristic of the SD rat strain, or a unique epistatic interaction between SD and BN. To our knowledge no other studies have reported a genetic x epigenetic interaction of genetic origin in the brain

    Paternal genetic contribution influences fetal vulnerability to maternal alcohol consumption in a rat model of fetal alcohol spectrum disorder.

    Get PDF
    Fetal alcohol exposure causes in the offspring a collection of permanent physiological and neuropsychological deficits collectively termed Fetal Alcohol Spectrum Disorder (FASD). The timing and amount of exposure cannot fully explain the substantial variability among affected individuals, pointing to genetic influences that mediate fetal vulnerability. However, the aspects of vulnerability that depend on the mother, the father, or both, are not known.Using the outbred Sprague-Dawley (SD) and inbred Brown Norway (BN) rat strains as well as their reciprocal crosses, we administered ethanol (E), pair-fed (PF), or control (C) diets to the pregnant dams. The dams' plasma levels of free thyroxine (fT4), triiodothyronine (T3), free T3 (fT3), and thyroid stimulating hormone (TSH) were measured to elucidate potential differences in maternal thyroid hormonal environment, which affects specific aspects of FASD. We then compared alcohol-exposed, pair fed, and control offspring of each fetal strain on gestational day 21 (G21) to identify maternal and paternal genetic effects on bodyweight and placental weight of male and female fetuses.SD and BN dams exhibited different baseline hypothalamic-pituitary-thyroid function. Moreover, the thyroid function of SD dams was more severely affected by alcohol consumption while that of BN dams was relatively resistant. This novel finding suggests that genetic differences in maternal thyroid function are one source of maternal genetic effects on fetal vulnerability to FASD. The fetal vulnerability to decreased bodyweight after alcohol exposure depended on the genetic contribution of both parents, not only maternal contribution as previously thought. In contrast, the effect of maternal alcohol consumption on placental weight was consistent and not strain-dependent. Interestingly, placental weight in fetuses with different paternal genetic contributions exhibited opposite responses to caloric restriction (pair feeding). In summary, these novel findings demonstrate both maternal and paternal genetic contributions to in utero vulnerability to alcohol, refining our understanding of the genetically-based heterogeneity seen in human FASD
    corecore