26,824 research outputs found
The role of shear in dissipative gravitational collapse
In this paper we investigate the physics of a radiating star undergoing
dissipative collapse in the form of a radial heat flux. Our treatment clearly
demonstrates how the presence of shear affects the collapse process; we are in
a position to contrast the physical features of the collapsing sphere in the
presence of shear with the shear-free case. By employing a causal heat
transport equation of the Maxwell-Cattaneo form we show that the shear leads to
an enhancement of the core temperature thus emphasizing that relaxational
effects cannot be ignored when the star leaves hydrostatic equilibrium.Comment: 15 pages, To appear in Int. J. Mod. Phys.
A Novel Beamformed Control Channel Design for LTE with Full Dimension-MIMO
The Full Dimension-MIMO (FD-MIMO) technology is capable of achieving huge
improvements in network throughput with simultaneous connectivity of a large
number of mobile wireless devices, unmanned aerial vehicles, and the Internet
of Things (IoT). In FD-MIMO, with a large number of antennae at the base
station and the ability to perform beamforming, the capacity of the physical
downlink shared channel (PDSCH) has increased a lot. However, the current
specifications of the 3rd Generation Partnership Project (3GPP) does not allow
the base station to perform beamforming techniques for the physical downlink
control channel (PDCCH), and hence, PDCCH has neither the capacity nor the
coverage of PDSCH. Therefore, PDCCH capacity will still limit the performance
of a network as it dictates the number of users that can be scheduled at a
given time instant. In Release 11, 3GPP introduced enhanced PDCCH (EPDCCH) to
increase the PDCCH capacity at the cost of sacrificing the PDSCH resources. The
problem of enhancing the PDCCH capacity within the available control channel
resources has not been addressed yet in the literature. Hence, in this paper,
we propose a novel beamformed PDCCH (BF-PDCCH) design which is aligned to the
3GPP specifications and requires simple software changes at the base station.
We rely on the sounding reference signals transmitted in the uplink to decide
the best beam for a user and ingeniously schedule the users in PDCCH. We
perform system level simulations to evaluate the performance of the proposed
design and show that the proposed BF-PDCCH achieves larger network throughput
when compared with the current state of art algorithms, PDCCH and EPDCCH
schemes
Using bijective maps to improve free energy estimates
We derive a fluctuation theorem for generalized work distributions, related
to bijective mappings of the phase spaces of two physical systems, and use it
to derive a two-sided constraint maximum likelihood estimator of their free
energy difference which uses samples from the equilibrium configurations of
both systems. As an application, we evaluate the chemical potential of a dense
Lennard-Jones fluid and study the construction and performance of suitable
maps.Comment: 17 pages, 11 figure
Phase Structure of 2-Flavor Quark Matter: Heterogeneous Superconductors
We analyze the free energy of charge and color neutral 2-flavor quark matter
within the BCS approximation. We consider both the homogeneous gapless
superconducting phase and the heterogeneous mixed phase where normal and BCS
superconducting phases coexist. We calculate the surface tension between normal
and superconducting phases and use it to compare the free energies of the
gapless and mixed phases. Our calculation, which retains only the leading order
gradient contribution to the free energy, indicates that the mixed phase is
energetically favored over an interesting range of densities of relevance to 2
flavor quark matter in neutron stars.Comment: 11 pages, 4 figures. Major Revisions. Includes a detailed discussion
of the kinetic terms of the effective theory, instabilities of the gapless
phase and the charge neutral phase diagra
The Stability of Strange Star Crusts and Strangelets
We construct strangelets, taking into account electrostatic effects,
including Debye screening, and arbitrary surface tension sigma of the interface
between vacuum and quark matter. We find that there is a critical surface
tension sigma_crit below which large strangelets are unstable to fragmentation
and below which quark star surfaces will fragment into a crystalline crust made
of charged strangelets immersed in an electron gas. We derive a
model-independent relationship between sigma_crit and two parameters that
characterize any quark matter equation of state. For reasonable model equations
of state, we find sigma_crit typically of order a few MeV/fm^2. If sigma <=
sigma_crit, the size-distribution of strangelets in cosmic rays could feature a
peak corresponding to the stable strangelets that we construct.Comment: 11 pages, LaTe
Star-forming Galaxies in the 'Redshift Desert'
We describe results of optical and near-IR observations of a large
spectroscopic sample of star-forming galaxies photometrically-selected to lie
in the redshift range 1.4 < z < 2.5, often called the ``redshift desert''
because of historical difficulty in obtaining spectroscopic redshifts in this
range. We show that the former ``redshift desert'' is now very much open to
observation.Comment: 10 pages, 6 figures, to appear in the Proceedings of the ESO/USM/MPE
Workshop on "Multiwavelength Mapping of Galaxy Formation and Evolution", eds.
R. Bender and A. Renzin
Experimental Evidence of Time Delay Induced Death in Coupled Limit Cycle Oscillators
Experimental observations of time delay induced amplitude death in a pair of
coupled nonlinear electronic circuits that are individually capable of
exhibiting limit cycle oscillations are described. In particular, the existence
of multiply connected death islands in the parameter space of the coupling
strength and the time delay parameter for coupled identical oscillators is
established. The existence of such regions was predicted earlier on theoretical
grounds in [Phys. Rev. Lett. 80, 5109 (1998); Physica 129D, 15 (1999)]. The
experiments also reveal the occurrence of multiple frequency states, frequency
suppression of oscillations with increased time delay and the onset of both
in-phase and anti-phase collective oscillations.Comment: 4 aps formatted RevTeX pages; 6 figures; to appear in Phys. Rev. Let
High Quality, Transferable Graphene Grown on Single Crystal Cu(111) Thin Films on Basal-Plane Sapphire
The current method of growing large-area graphene on Cu surfaces
(polycrystalline foils and thin films) and its transfer to arbitrary substrates
is technologically attractive. However, the quality of graphene can be improved
significantly by growing it on single-crystal Cu surfaces. Here we show that
high quality, large-area graphene can be grown on epitaxial single-crystal
Cu(111) thin films on reusable basal-plane sapphire (alpha-Al2O3(0001))
substrates and then transferred to another substrate. While enabling graphene
growth on Cu single-crystal surfaces, this method has the potential to avoid
the high cost and extensive damage to graphene associated with sacrificing bulk
single-crystal Cu during graphene transfer.Comment: 10 pages, 3 figure
- …