The Full Dimension-MIMO (FD-MIMO) technology is capable of achieving huge
improvements in network throughput with simultaneous connectivity of a large
number of mobile wireless devices, unmanned aerial vehicles, and the Internet
of Things (IoT). In FD-MIMO, with a large number of antennae at the base
station and the ability to perform beamforming, the capacity of the physical
downlink shared channel (PDSCH) has increased a lot. However, the current
specifications of the 3rd Generation Partnership Project (3GPP) does not allow
the base station to perform beamforming techniques for the physical downlink
control channel (PDCCH), and hence, PDCCH has neither the capacity nor the
coverage of PDSCH. Therefore, PDCCH capacity will still limit the performance
of a network as it dictates the number of users that can be scheduled at a
given time instant. In Release 11, 3GPP introduced enhanced PDCCH (EPDCCH) to
increase the PDCCH capacity at the cost of sacrificing the PDSCH resources. The
problem of enhancing the PDCCH capacity within the available control channel
resources has not been addressed yet in the literature. Hence, in this paper,
we propose a novel beamformed PDCCH (BF-PDCCH) design which is aligned to the
3GPP specifications and requires simple software changes at the base station.
We rely on the sounding reference signals transmitted in the uplink to decide
the best beam for a user and ingeniously schedule the users in PDCCH. We
perform system level simulations to evaluate the performance of the proposed
design and show that the proposed BF-PDCCH achieves larger network throughput
when compared with the current state of art algorithms, PDCCH and EPDCCH
schemes