20,662 research outputs found

    The role of shear in dissipative gravitational collapse

    Full text link
    In this paper we investigate the physics of a radiating star undergoing dissipative collapse in the form of a radial heat flux. Our treatment clearly demonstrates how the presence of shear affects the collapse process; we are in a position to contrast the physical features of the collapsing sphere in the presence of shear with the shear-free case. By employing a causal heat transport equation of the Maxwell-Cattaneo form we show that the shear leads to an enhancement of the core temperature thus emphasizing that relaxational effects cannot be ignored when the star leaves hydrostatic equilibrium.Comment: 15 pages, To appear in Int. J. Mod. Phys.

    Simulation of electron transport in quantum well devices

    Get PDF
    Double barrier resonant tunneling diodes (DBRTD) have received much attention as possible terahertz devices. Despite impressive experimental results, the specifics of the device physics (i.e., how the electrons propagate through the structure) are only qualitatively understood. Therefore, better transport models are warranted if this technology is to mature. In this paper, the Lattice Wigner function is used to explain the important transport issues associated with DBRTD device behavior

    The Stability of Strange Star Crusts and Strangelets

    Full text link
    We construct strangelets, taking into account electrostatic effects, including Debye screening, and arbitrary surface tension sigma of the interface between vacuum and quark matter. We find that there is a critical surface tension sigma_crit below which large strangelets are unstable to fragmentation and below which quark star surfaces will fragment into a crystalline crust made of charged strangelets immersed in an electron gas. We derive a model-independent relationship between sigma_crit and two parameters that characterize any quark matter equation of state. For reasonable model equations of state, we find sigma_crit typically of order a few MeV/fm^2. If sigma <= sigma_crit, the size-distribution of strangelets in cosmic rays could feature a peak corresponding to the stable strangelets that we construct.Comment: 11 pages, LaTe

    Meissner screening mass in two-flavor quark matter at nonzero temperature

    Get PDF
    We calculate the Meissner screening mass of gluons 4--7 in two-flavor quark matter at nonzero temperature. To this end, we study the effective potential of the 2SC/g2SC phases including a vector condensate andcalculatetheMeissnermassfromthepotentialcurvaturewithrespectto and calculate the Meissner mass from the potential curvature with respect to . We find that the Meissner mass becomes real at the critical temperature which is about the half of the chemical potential mismatch. The phase diagram of the neutral two-flavor color superconductor is presented in the plane of temperature and coupling strength. We indicate the unstable region for gluons 4--7 on the phase diagram.Comment: 4 pages, 3 figures, minor revisions to text, version to appear in PR

    Star-forming Galaxies in the 'Redshift Desert'

    Get PDF
    We describe results of optical and near-IR observations of a large spectroscopic sample of star-forming galaxies photometrically-selected to lie in the redshift range 1.4 < z < 2.5, often called the ``redshift desert'' because of historical difficulty in obtaining spectroscopic redshifts in this range. We show that the former ``redshift desert'' is now very much open to observation.Comment: 10 pages, 6 figures, to appear in the Proceedings of the ESO/USM/MPE Workshop on "Multiwavelength Mapping of Galaxy Formation and Evolution", eds. R. Bender and A. Renzin
    corecore