23,531 research outputs found

    DESAP 1: A structural design program with stress and displacement constraints. Volume 1: Theoretical and user's manual

    Get PDF
    A finite element program is presented for computer-automated, minimum weight design of elastic structures with constraints on stresses (including local instability criteria) and displacements. Volume 1 of the report contains the theoretical and user's manual of the program. Sample problems and the listing of the program are included in Volumes 2 and 3. The element subroutines are organized so as to facilitate additions and changes by the user. As a result, a relatively minor programming effort would be required to make DESAP 1 into a special purpose program to handle the user's specific design requirements and failure criteria

    DESAP 2: A structural design program with stress and buckling constraints. Volume 1: Theoretical and user's manual

    Get PDF
    DESAP 2 is described as a finite element program for computer-automated, minimum weight design of elastic structures with constraints on stresses (including local instability criteria) and buckling loads. No limits are placed on the number of load conditions for stress-constrained design, but only one of these load conditions can be chosen as the potential buckling load. A substantial portion of DESAP 2, particularly the analysis of the prebuckling state, is derived from the SOLID SAP finite element program. The stress-constrained design is based on the classical stress ratio method, which drives the design towards a fully stressed state. The constraints on the buckling load are handled by solving the appropriate optimality criterion by successive iterations. During each iteration, the element sizes determined by the stress ratio method are used as the minimum size constraints. The element subroutines are organized in a manner that permits the user to make additions and changes with a minimal programming effort. Consequently, DESAP 2 can readily be changed into a special-purpose program to handle the user's specific design requirements and failure criteria

    Viscous three-dimensional analyses for nozzles for hypersonic propulsion

    Get PDF
    A Navier-Stokes computer code was validated using a number of two- and three-dimensional configurations for both laminar and turbulent flows. The validation data covers a range of freestream Mach numbers from 3 to 14, includes wall pressures, velocity profiles, and skin friction. Nozzle flow fields computed for a generic scramjet nozzle from Mach 3 to 20, wall pressures, wall skin friction values, heat transfer values, and overall performance are presented. In addition, three-dimensional solutions obtained for two asymmetric, single expansion ramp nozzles at a pressure ratio of 10 consists of the internal expansion region in the converging/diverging sections and the external supersonic exhaust in a quiescent ambient environment. The fundamental characteristics that were captured successfully include expansion fans; Mach wave reflections; mixing layers; and nonsymmetrical, multiple inviscid cell, supersonic exhausts. Comparison with experimental data for wall pressure distributions at the center planes shows good agreement
    corecore