24,444 research outputs found

    Low density approach to the Kondo-lattice model

    Full text link
    We propose a new approach to the (ferromagnetic) Kondo-lattice model in the low density region, where the model is thought to give a reasonable frame work for manganites with perovskite structure exhibiting the "colossal magnetoresistance" -effect. Results for the temperature- dependent quasiparticle density of states are presented. Typical features can be interpreted in terms of elementary spin-exchange processes between itinerant conduction electrons and localized moments. The approach is exact in the zero bandwidth limit for all temperatures and at T=0 for arbitrary bandwidths, fulfills exact high-energy expansions and reproduces correctly second order perturbation theory in the exchange coupling.Comment: 11 pages, 7 figures, accepted by PR

    Ferromagnetism within the periodic Anderson model: A new approximation scheme

    Full text link
    We introduce a new approach to the periodic Anderson model (PAM) that allows a detailed investigation of the magnetic properties in the Kondo as well as the intermediate valence regime. Our method is based on an exact mapping of the PAM onto an effective medium strong-coupling Hubbard model. For the latter, the so-called spectral density approach (SDA) is rather well motivated since it is based on exact results in the strong coupling limit. Besides the T=0 phase diagram, magnetization curves and Curie temperatures are presented and discussed with help of temperature-dependent quasiparticle densities of state. In the intermediate valence regime, the hybridization gap plays a major role in determining the magnetic behaviour. Furthermore, our results indicate that ferromagnetism in this parameter regime is not induced by an effective spin-spin interaction between the localized levels mediated by conduction electrons as it is the case in the Kondo regime. The magnetic ordering is rather a single band effect within an effective f-band.Comment: 13 pages, 16 figures, Phys. Stat. Sol. in pres

    Time Delay Induced Death in Coupled Limit Cycle Oscillators

    Get PDF
    We investigate the dynamical behaviour of two limit cycle oscillators that interact with each other via time delayed coupling and find that time delay can lead to amplitude death of the oscillators even if they have the same frequency. We demonstrate that this novel regime of amplitude "death" also exists for large collections of coupled identical oscillators and provide quantitative measures of this death region in the parameter space of coupling strength and time delay. Its implication for certain biological and physical applications is also pointed out.Comment: 4 aps formatted revtex pages; 3 figures; to be published in Phys. Rev. Let

    Numerical Toy-Model Calculation of the Nucleon Spin Autocorrelation Function in a Supernova Core

    Full text link
    We develop a simple model for the evolution of a nucleon spin in a hot and dense nuclear medium. A given nucleon is limited to one-dimensional motion in a distribution of external, spin-dependent scattering potentials. We calculate the nucleon spin autocorrelation function numerically for a variety of potential densities and distributions which are meant to bracket realistic conditions in a supernova core. For all plausible configurations the width of the spin-density structure function is found to be less than the temperature. This is in contrast with a naive perturbative calculation based on the one-pion exchange potential which overestimates the width and thus suggests a large suppression of the neutrino opacities by nucleon spin fluctuations. Our results suggest that it may be justified to neglect the collisional broadening of the spin-density structure function for the purpose of estimating the neutrino opacities in the deep inner core of a supernova. On the other hand, we find no indication that processes such as axion or neutrino pair emission, which depend on nucleon spin fluctuations, are substantially suppressed beyond the multiple-scattering effect already discussed in the literature. Aside from these practical conclusions, our model reveals a number of interesting and unexpected insights. For example, the spin-relaxation rate saturates with increasing potential strength only if bound states are not allowed to form by including a repulsive core. There is no saturation with increasing density of scattering potentials until localized eigenstates of energy begin to form.Comment: 14 latex pages in two-column format, 15 postscript figures included, uses revtex.sty and epsf.sty. Submitted to Physical Review

    Contact stress analysis of spiral bevel gears using nonlinear finite element static analysis

    Get PDF
    A procedure is presented for performing three-dimensional stress analysis of spiral bevel gears in mesh using the finite element method. The procedure involves generating a finite element model by solving equations that identify tooth surface coordinates. Coordinate transformations are used to orientate the gear and pinion for gear meshing. Contact boundary conditions are simulated with gap elements. A solution technique for correct orientation of the gap elements is given. Example models and results are presented

    On some singularities of the correlation functions that determine neutrino opacities

    Get PDF
    Certain perturbation graphs in the calculation of the effects of the medium on neutrino scattering in supernova matter have a nonintegrable singularity in a physical region. A number of papers have addressed the apparent pathology through an ansatz that invokes higher order (rescattering) effects. Taking the Gamow-Teller terms as an example, we display an expression for the spin-spin correlation function that determines the cross-sections. It is clear from the form that there are no pathologies in the order by order perturbation expansion. Explicit formulae are given for a simple case, leading to an answer that is very different from one given by other authors.Comment: 8 page
    corecore