9 research outputs found

    Why is saline so acidic (and does it really matter?)

    Get PDF
    Commercial 0.9% saline solution for infusion has a pH around 5.5. There are many reasons for this acidity, some of them still obscure. It is also true that infusion of normal saline can lead to met-abolic acidaemia, yet the link between the acidity of saline solution and the acidaemia it can en-gender is not straightforward. This commentary draws together the known and putative sources of acidity in saline solutions: it turns out that the acidity of saline solution is essentially unrelated to the acidaemia complicating saline infusion.Benjamin AJ Redd

    Calcium desensitisation in late polymicrobial sepsis is associated with loss of vasopressor sensitivity in a murine model

    Get PDF
    BACKGROUND: Sepsis is characterised by diminished vasopressor responsiveness. Vasoconstriction depends upon a balance: Ca(2+)-dependent myosin light-chain kinase promotes and Ca(2+)-independent myosin light-chain phosphatase (MLCP) opposes vascular smooth muscle contraction. The enzyme Rho kinase (ROK) inhibits MLCP, favouring vasoconstriction. We tested the hypothesis that ROK-dependent MLCP inhibition was attenuated in late sepsis and associated with reduced contractile responses to certain vasopressor agents. METHODS: This is a prospective, controlled animal study. Sixteen-week-old C57/BL6 mice received laparotomy or laparotomy with caecal ligation and puncture (CLP). Antibiotics, fluids and analgesia were provided before sacrifice on day 5. Vasoconstriction of the femoral arteries to a range of stimuli was assessed using myography: (i) depolarisation with 87 mM K(+) assessed voltage-gated Ca(2+) channels (L-type, Cav1.2 Ca(2+) channels (LTCC)), (ii) thromboxane A2 receptor activation assessed the activation state of the LTCC and ROK/MLCP axis, (iii) direct PKC activation (phorbol-dibutyrate (PDBu), 5 μM) assessed the PKC/CPI-17 axis independent of Ca(2+) entry and (iv) α1-adrenoceptor stimulation with phenylephrine (10(-8) to 10(-4) M) and noradrenaline (10(-8) to 10(-4) M) assessed the sum of these pathways plus the role of the sarcoplasmic reticulum (SR). ROK-dependent MLCP activity was indexed by Western blot analysis of P[Thr855]MYPT. Parametric and non-parametric data were analysed using unpaired Student's t-tests and Mann-Whitney tests, respectively. RESULTS: ROK-dependent inhibition of MLCP activity was attenuated in both unstimulated (n = 6 to 7) and stimulated (n = 8 to 12) vessels from mice that had undergone CLP (p < 0.05). Vessels from CLP mice demonstrated reduced vasoconstriction to K(+), thromboxane A2 receptor activation and PKC activation (n = 8 to 13; p < 0.05). α1-adrenergic responses were unchanged (n = 7 to 12). CONCLUSIONS: In a murine model of sepsis, ROK-dependent inhibition of MLCP activity in vessels from septic mice was reduced. Responses to K(+) depolarisation, thromboxane A2 receptor activation and PKC activation were diminished in vitro whilst α1-adrenergic responses remained intact. Inhibiting MLCP may present a novel therapeutic target to manage sepsis-induced vascular dysfunction.Benjamin AJ Reddi, John F Beltrame, Richard L Young, and David P Wilso

    Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection

    No full text
    BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious respiratory virus which is responsible for the coronavirus disease 2019 (COVID-19) pandemic. It is increasingly clear that recovered individuals, even those who had mild COVID-19, can suffer from persistent symptoms for many months after infection, a condition referred to as "long COVID", post-acute sequelae of COVID-19 (PASC), post-acute COVID-19 syndrome, or post COVID-19 condition. However, despite the plethora of research on COVID-19, relatively little is known about the molecular underpinnings of these long-term effects.MethodsWe have undertaken an integrated analysis of immune responses in blood at a transcriptional, cellular, and serological level at 12, 16, and 24 weeks post-infection (wpi) in 69 patients recovering from mild, moderate, severe, or critical COVID-19 in comparison to healthy uninfected controls. Twenty-one of these patients were referred to a long COVID clinic and &gt; 50% reported ongoing symptoms more than 6 months post-infection.ResultsAnti-Spike and anti-RBD IgG responses were largely stable up to 24 wpi and correlated with disease severity. Deep immunophenotyping revealed significant differences in multiple innate (NK cells, LD neutrophils, CXCR3+ monocytes) and adaptive immune populations (T helper, T follicular helper, and regulatory T cells) in convalescent individuals compared to healthy controls, which were most strongly evident at 12 and 16 wpi. RNA sequencing revealed significant perturbations to gene expression in COVID-19 convalescents until at least 6 months post-infection. We also uncovered significant differences in the transcriptome at 24 wpi of convalescents who were referred to a long COVID clinic compared to those who were not.ConclusionsVariation in the rate of recovery from infection at a cellular and transcriptional level may explain the persistence of symptoms associated with long COVID in some individuals

    SARS-CoV-2 Omicron variant escapes neutralizing antibodies and T&nbsp;cell responses more efficiently than other variants in mild COVID-19 convalescents.

    No full text
    Coronavirus disease 2019 (COVID-19) convalescents living in regions with low vaccination rates rely on post-infection immunity for protection against re-infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluate humoral and T&nbsp;cell immunity against five variants of concern (VOCs) in mild-COVID-19 convalescents at 12&nbsp;months after infection with ancestral virus. In this cohort, ancestral, receptor-binding domain (RBD)-specific antibody and circulating memory B cell levels are conserved in most individuals, and yet serum neutralization against live B.1.1.529 (Omicron) is completely abrogated and significantly reduced for other VOCs. Likewise, ancestral SARS-CoV-2-specific memory T&nbsp;cell frequencies are maintained in &gt;50% of convalescents, but the cytokine response in these cells to mutated spike epitopes corresponding to B.1.1.529 and B.1.351 (Beta) VOCs were impaired. These results indicate that increased antigen variability in VOCs impairs humoral and spike-specific T&nbsp;cell immunity post-infection, strongly suggesting that COVID-19 convalescents are vulnerable and at risk of re-infection with VOCs, thus stressing the importance of vaccination programs

    BMP treatment for improving tendon repair. Studies on rat and rabbit Achilles tendons

    Get PDF
    We wanted to improve tendon healing by adding a growth factor. Bone Morphogenetic Proteins (BMPs) are well known to stimulate bone healing and bone formation. The local environment is of major importance for cell differentiation after a BMP has been added. Cartilage Derived Morphogenetic Proteins (CDMPs) -1, -2 and -3 (BMP 14, 13 and 12 or GDF 5, 6 and 7) form a subgroup in the BMP-family and are closely related to OP-1 (BMP 7). CDMP implants have been shown to induce bone and cartilage as well as tendon and ligament-like tissue. Our hypothesis has therefore been that if a BMP were added in a tendon environment, a tendon-like tissue would be induced. We have developed models in rats and rabbits where the Achilles tendon is transsected. To influence tendon healing, different BMPs (OP-1, CDMP-1. -2 and -3) were added, either on a collagen carrier, or as a local injection into the tendon defect. The tendons were evaluated by histology and mechanical testing at different time-points after transection. The results show that also when the mechanical environment would favour the formation of a tendon-like tissue, OP-1 reduced tendon strength in aid of bone formation. In contrast, CDMP-1, -2 and -3 had a beneficial effect upon tendon healing in rats. More callus tissue was produced than in controls, and strength and stiffness were improved, although minor amounts of bone and cartilage were detected in the tendon callus. Cartilage and bone formation sometimes occur normally during Achilles tendon healing in rats. In the rabbit model, where the healing situation is more similar to the clinical situation, the positive result with CDMP-2 was repeated. Moreover, in rabbits no bone or cartilage was found. The results suggest that conservative treatment of Achilles tendon ruptures with injection of a CDMP in combination with early rehabilitation might afford a good alternative to surgical treatment
    corecore