3 research outputs found

    A biophysical model of decision making in an antisaccade task through variable climbing activity

    Get PDF
    We present a biophysical model of saccade initiation based on competitive integration of planned and reactive cortical saccade decision signals in the intermediate layer of the superior colliculus. In the model, the variable slopes of the climbing activities of the input cortical decision signals are produced from variability in the conductances of Na+, K+, Ca2+ activated K+, NMDA and GABA currents. These cortical decision signals are integrated in the activities of buildup neurons in the intermediate layer of the superior colliculus, whose activities grow nonlinearly towards a preset criterion level. When the level is crossed, a movement is initiated. The resultant model reproduces the unimodal distributions of saccade reaction times (SRTs) for correct antisaccades and erroneous prosaccades as well as the variability of SRTs (ranging from 80ms to 600ms) and the overall 25% of erroneous prosaccade responses in a large sample of 2006 young men performing an antisaccade task

    Outcomes for patients with COVID-19 admitted to Australian intensive care units during the first four months of the pandemic

    No full text
    Objectives: To describe the characteristics and outcomes of patients with COVID-19 admitted to intensive care units (ICUs) during the initial months of the pandemic in Australia. Design, setting: Prospective, observational cohort study in 77 ICUs across
    corecore