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Abstract. We present a biophysical model of saccade initiation based on 
competitive integration of planned and reactive cortical saccade decision signals 
in the intermediate layer of the superior colliculus. In the model, the variable 
slopes of the climbing activities of the input cortical decision signals are 
produced from variability in the conductances of Na+, K+, Ca2+ activated K+, 
NMDA and GABA currents. These cortical decision signals are integrated in 
the activities of buildup neurons in the intermediate layer of the superior 
colliculus, whose activities grow nonlinearly towards a preset criterion level. 
When the level is crossed, a movement is initiated. The resultant model 
reproduces the unimodal distributions of saccade reaction times (SRTs) for 
correct antisaccades and erroneous prosaccades as well as the variability of 
SRTs (ranging from 80ms to 600ms) and the overall 25% of erroneous 
prosaccade responses in a large sample of 2006 young men performing an 
antisaccade task. 

1   Introduction 

In the brain, climbing activity is a prominent profile of neuronal activity observed in 
the thalamus, superior colliculus, primary motor cortex, prefrontal cortex and other 
brain areas and it is found to be related to the anticipation of forthcoming events and 
to the generation of movements. Climbing activity spans from hundreds of 
milliseconds up to tens of seconds [1]. In the frontal eye fields of monkeys there are 
populations of visuomotor neurons that begin to fire in advance of saccades, with 
their activity rising linearly upon presentation of a suitable target stimulus [5]. 
Buildup cells in the monkey’s superior colliculus (SC) begin to linearly build up their 
activity after the signal to make a saccade is presented [8]. The rate of rise varies 
randomly from trial to trial and the saccade is initiated when this activity reaches a 
fixed threshold [5], [6]. 
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The model presented in this paper is an attempt to model the biophysical 
mechanisms underlying the generation of slowly varying climbing, temporal 
integrator-like activity of the reactive and planned input decision signals of a SC 
model in an antisaccade task [9]. This work combines and extends previous 
biophysical models [1], [9], [10].  

2   Materials and Methods 

2.1   Basis of the Model 

In a modeling attempt of the antisaccade task [4], Cutsuridis and colleagues [9] 
hypothesized that the preparation of an antisaccadic eye movement consisted of two 
cortically independent and spatially separated decision signals representing the 
reactive and planned saccade signals, whose linearly rising phases are derived from 
two normal distributions with different means and standard deviations. These two 
cortical decision signals were then integrated at opposite colliculi locations, where 
they competed against each other via lateral excitation and remote inhibition. A 
saccade was initiated when these decision processes, represented by the neuronal 
activity of SC buildup neurons with nonlinear growth rates varying randomly from a 
normal distribution, gradually build up their activity until reaching a preset criterion 
level. The crossing of the preset criterion level in turn released the “brake” from the 
SC burst neurons and allowed them to discharge resulting in the initiation of an eye 
movement. The model’s main prediction was that there is no need of a top-down 
inhibitory signal that prevents the error prosaccade from being expressed, thus 
allowing the correct antisaccade to be released. Moreover, the model offered a 
functional rationale at the SC neuronal population level of why the antisaccadic 
reaction times are so long and variable and simulated accurately the correct and error 
antisaccade latencies, the shape distributions and the error probabilities. 

Our intention in this study is to model the biophysically plausible mechanisms that 
can produce climbing activity with adjustable slope. We extend the SC model by 
adding two cortical modules that will generate the planned and reactive decision 
signals. The decision signals will be derived from the population activities of 
networks of pyramidal neurons and inhibitory interneurons. We will use Hodgkin-
Huxley mathematical formulations to explore the biophysical mechanisms that give 
rise to the randomly varying climbing activities of the cortical decision signals. These 
decision signals will then drive the SC model and generate correct antisaccade and 
error prosaccade reaction time (RT) distributions as well as response probabilities. 
These simulated RT distributions and error probabilities will be compared to 
psychophysically derived latency distributions and error probabilities [3], [7]. 

2.2   Architecture  

Standard Hodgkin-Huxley modeling techniques were used to simulate networks of 
single compartmental models of cortical pyramidal neurons and cortical inhibitory 
interneurons (IN). Pyramidal neuron membrane potential obeyed  
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injGABANMDAAMPAAHPDRCHVAKSNaPNaleak IIIIIIIIIIIIdtCdV +++++++++++−= )(/    (1) 

with Cm = 1 µF cm-2. GABAergic inhibitory interneuron membrane potential obeyed  

injGABANMDAAMPADRNaleak IIIIIIIdtCdV ++++++−= )(/  (2) 

with Cm = 1 µF cm-2. Ionic currents INa, INaP, IKs, IC, IDR, and IHVA were modeled as in 
[10], whereas IAHP was modeled as in [1]. Table 2 of [10] provided a summary of the 
gating variables and their respective powers for all ionic conductances used in this 
study. The synaptic currents (IAMPA, INMDA, and IGABA) were given by double 
exponential functions exactly as in [1]. Synaptic short term dynamics were 
determined by the available synaptic efficacy (R) and a utilization variable (u) exactly 
as in [1]. We simulated low spontaneous background activity in the network, by 
delivering random noise to all pyramidal and GABAergic cells, generated from 
Poisson processes convolved with the AMPA, NMDA and GABA synaptic 
conductances. Because very little is known about the detailed connectivity of neurons 
and the associated synaptic strengths in the frontal cortices, we intentionally kept the 
network model as general as possible. Two networks of 10 pyramidal cells and 5 
GABAergic interneurons each were simulated. In each network, we assumed that all 
pyramidal cells and GABAergic interneurons were fully connected [10]. The output 
of each network was the average population activity of a homogenous population of 
neurons with identical connections. These outputs were then used as the input drives 
of the superior colliculus (SC) model [9]. 

2.3   Implementation 

The simulations were performed on a Pentium IV 3.2 GHz PC with MATLAB’s 
version R13 installed. The whole system of differential and algebraic equations was 
implemented in MATLAB (The MathWorks, Inc, Natick, MA). The differential 
equations of the cortical neural integrator model were integrated numerically using 
one of the MATLAB ordinary differential equation solvers (mainly ode23s, a one step 
solver based on modified Rosenbrock formula of order 2 [2]) with time step ∆t = 
0.001 ms. The differential equations of the SC model were integrated numerically 
using one of the MATLAB ordinary differential equations solvers (ode45, an implicit 
solver based on the Dormand-Prince pair method [2]) with time step ∆t = 0.001 ms). 
Relative (error) tolerance was set to 10-6. 

3   Experiments and Results 

3.1   Experimental Setup 

The data used in this study were collected in an antisaccade task [3], [7]. Details of 
the experimental procedure used for the collection of these data are described therein 
[3], [7]. Briefly, 2006 conscripts of the Greek Air Force were instructed to perform 
eye movements in the opposite direction from the location of a stimulus that appears 
in their right or left peripheral visual field while they are fixating on a central 
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stimulus. The correct or error saccade reaction time (SRT) was measured in each trial 
for every subject. Trials with reaction times < 80 ms were excluded as anticipations 
and trials with reaction times > 600 ms were excluded as no response trials. The 
median RT and the inter-quartile range for antisaccades and error prosaccades of all 
2006 conscripts were grouped into ten virtual groups after performing clustering 
analysis using the STATISTICA software version 5.5 (StatSoft, Inc, Tulsa, OK). The 
purpose of the cluster analysis was to partition the observations into groups 
("clusters") so that the pairwise dissimilarities between those assigned to the same 
cluster tend to be smaller than those in a different cluster. We demonstrate below the 
results from all ten clusters. 

3.2   Results 

The observed variability in the rising phase (slope) of the average firing rates of the 
pyramidal neurons was found to be due to noise in the conductances of the INaP and 
INMDA currents. Noise in the conductances of IKs, IDR, IC and IHVA currents didn’t 
produce any variability in the rising phase of the average firing rate. The slope of the 
climbing activity was carefully adjusted so that the simulated correct and error RT 
distributions and the error probabilities to approximate the experimental ones in an 
antisaccade task (see Table 1). We estimated the slopes of the rising phases of the 
average firing rates of two cortical networks of neurons in each trial by fitting to them 
a straight line. We used these slope values as values of the slopes of the rising phases 
of the planned and reactive inputs of [9]. The slope values of the reactive and planned 
inputs were sorted in ascending order, so that the slope of the reactive input was 
always greater than the slope of the planned input. The threshold was adjusted, so that 
the simulated error rate closely matched the observed. Its value was set to a different 
value for each group, but it was kept fixed across trials for each group [9].   

Table 1. (Columns 2-4) Simulated correct median, error median, and error rate for average and 
all ten groups. Values in parentheses stand for experimental values. Units: correct SRT (ms), 
error SRT (ms). (Columns 5-6) Values of χ2 test of homogeneity between correct and error 
experimental and simulated percent density distributions for antisaccades and error 
prosaccades. χ2 values marked with an asterisk indicate a significant difference between the 
simulated and the observed RT distributions.  Rejection region: χ2 ≥ χ2

0.05 (37.65). The degrees 
of freedom were 25. 

 Median  
RT 

of antisaccades 

Median 
RT of error 
prosaccades 

% antisaccade 
error rate 

antisaccade χ2 
value 

 

prosaccade  
χ2 value 

 
G 1 254.80 (242.40) 212.99 (216.66) 24.27 (17.02) 35.21 24.18 
G 2 282.38 (288.44) 188.10 (193.66) 23.93 (28.86) 31.82 27.97 
G 3 263.10 (251.79) 180.63 (175.53) 20.87 (24.79) 30.34 21.82 
G 4 365.69 (349.42) 218.99 (221.36) 37.00 (34.58) 36.46 35.67 
G 5 218.20 (213.58) 177.85 (172.77) 27.36 (24.92) 35.21 24.18 
G 6 294.174 (288.16) 279.541(265.20) 13.04 (16.15) 36.15 34.92 
G 7 276.50 (279.21) 202.97 (201.96) 38.62 (39.07) 90.5* 33.56 
G 8 281.89 (280.91) 212.54 (201.92) 20.15 (23.73) 32.16 32.89 
G 9 251.30 (249.27) 209.90 (211.65) 12.41 (12.02) 56.06* 96.24* 

G 10 327.56 (307.5) 331.07 (326.99) 20.05 (21.81) 33.88 83.57* 
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The SC model was allowed to run for 1000 trials in each group. We recorded the 
simulated median antisaccade and error prosaccade RT values and the error rates for 
each group (see Table 1). In order for each group to compare the SRT distributions of 
the real experimental data with the simulated SRT distributions, we normalized the 
SRT distribution of each subject data and then added the normalized distributions for 
all subjects belonging to the same group.  More specifically, the time interval between 
the 80 ms and 600 ms was divided into twenty-six categories, each lasting 20 ms (e.g. 
category 1 was between 80 ms and 100 ms, category 2 between 100 ms and 120 ms, 
and so forth). For each category we calculated its percent relative frequency of 
response times. The mean frequency for all subjects in a group was then calculated. 
The discrepancy in each category between the simulated and experimental correct and 
error distributions was measured by the squared difference between the observed 
(simulated) and the expected (experimental) frequencies divided by the expected 
frequency ((Observed – Expected) 2 / Expected). The χ2 value was the sum of these 
quantities for all categories. The rejection region was set at χ2 ≥ χ2

0.05. The χ2 test of 
homogeneity tested the null hypothesis of whether the simulated and experimental 
normalized distributions of SRTs for antisaccades and error prosaccades differ 
between them and showed a significant difference in 2 of the 10 comparisons for 
antisaccade RT distributions and 2 of the 10 comparisons for the error prosaccade RT 
distributions (see Table 1). 

4   Conclusion 

The simulations of the model presented here show that the randomly varying climbing 
activities of the input decision signals of a SC model in an antisaccade task are due to 
the interplay of K+, Na+, and Ca2+ activated K+ currents as well as due to variability of 
NMDA synaptic currents. The model is successful at predicting the correct 
antisaccade and error prosaccade RT distributions as well as the response probabilities 
from a population of 2006 subjects. There are further paradigms and architectures to 
which this model can be extended to. For instance, in this study we assumed that the 
internal properties of all pyramidal neurons in the network were the same 
(homogenous) and that the connectivity was symmetric. However, real populations of 
neurons will always have a certain degree of heterogeneity in their internal parameters 
and in their connectivity patterns. For this reason, we are in the process of examining 
other more realistic cases of neuronal connectivity in our network.  Finally, we are 
investigating in a more systematic way which ionic conductances have the strongest 
effects on the rising phase of the average firing rate of the pyramidal neurons and 
what are the mechanisms that cause the variability in the climbing activities. 
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