4 research outputs found

    Revisiting Projection-Free Optimization for Strongly Convex Constraint Sets

    Full text link
    We revisit the Frank-Wolfe (FW) optimization under strongly convex constraint sets. We provide a faster convergence rate for FW without line search, showing that a previously overlooked variant of FW is indeed faster than the standard variant. With line search, we show that FW can converge to the global optimum, even for smooth functions that are not convex, but are quasi-convex and locally-Lipschitz. We also show that, for the general case of (smooth) non-convex functions, FW with line search converges with high probability to a stationary point at a rate of O(1t)O\left(\frac{1}{t}\right), as long as the constraint set is strongly convex -- one of the fastest convergence rates in non-convex optimization.Comment: Extended version of paper accepted at AAAI-19, 19 pages, 10 figure

    Multi-Objective GFlowNets

    Full text link
    We study the problem of generating diverse candidates in the context of Multi-Objective Optimization. In many applications of machine learning such as drug discovery and material design, the goal is to generate candidates which simultaneously optimize a set of potentially conflicting objectives. Moreover, these objectives are often imperfect evaluations of some underlying property of interest, making it important to generate diverse candidates to have multiple options for expensive downstream evaluations. We propose Multi-Objective GFlowNets (MOGFNs), a novel method for generating diverse Pareto optimal solutions, based on GFlowNets. We introduce two variants of MOGFNs: MOGFN-PC, which models a family of independent sub-problems defined by a scalarization function, with reward-conditional GFlowNets, and MOGFN-AL, which solves a sequence of sub-problems defined by an acquisition function in an active learning loop. Our experiments on wide variety of synthetic and benchmark tasks demonstrate advantages of the proposed methods in terms of the Pareto performance and importantly, improved candidate diversity, which is the main contribution of this work.Comment: 23 pages, 8 figures. ICML 2023. Code at: https://github.com/GFNOrg/multi-objective-gf

    Improving and generalizing flow-based generative models with minibatch optimal transport

    Full text link
    Continuous normalizing flows (CNFs) are an attractive generative modeling technique, but they have been held back by limitations in their simulation-based maximum likelihood training. We introduce the generalized conditional flow matching (CFM) technique, a family of simulation-free training objectives for CNFs. CFM features a stable regression objective like that used to train the stochastic flow in diffusion models but enjoys the efficient inference of deterministic flow models. In contrast to both diffusion models and prior CNF training algorithms, CFM does not require the source distribution to be Gaussian or require evaluation of its density. A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference, as evaluated in our experiments. Furthermore, OT-CFM is the first method to compute dynamic OT in a simulation-free way. Training CNFs with CFM improves results on a variety of conditional and unconditional generation tasks, such as inferring single cell dynamics, unsupervised image translation, and Schr\"odinger bridge inference.Comment: A version of this paper appeared in the New Frontiers in Learning, Control, and Dynamical Systems workshop at ICML 2023. Title change from v1. Code: https://github.com/atong01/conditional-flow-matchin

    Learning GFlowNets from partial episodes for improved convergence and stability

    Full text link
    Generative flow networks (GFlowNets) are a family of algorithms for training a sequential sampler of discrete objects under an unnormalized target density and have been successfully used for various probabilistic modeling tasks. Existing training objectives for GFlowNets are either local to states or transitions, or propagate a reward signal over an entire sampling trajectory. We argue that these alternatives represent opposite ends of a gradient bias-variance tradeoff and propose a way to exploit this tradeoff to mitigate its harmful effects. Inspired by the TD(λ\lambda) algorithm in reinforcement learning, we introduce subtrajectory balance or SubTB(λ\lambda), a GFlowNet training objective that can learn from partial action subsequences of varying lengths. We show that SubTB(λ\lambda) accelerates sampler convergence in previously studied and new environments and enables training GFlowNets in environments with longer action sequences and sparser reward landscapes than what was possible before. We also perform a comparative analysis of stochastic gradient dynamics, shedding light on the bias-variance tradeoff in GFlowNet training and the advantages of subtrajectory balance.Comment: ICML 202
    corecore