36 research outputs found

    Stable Isotope Metabolic Labeling with a Novel 15N-Enriched Bacteria Diet for Improved Proteomic Analyses of Mouse Models for Psychopathologies

    Get PDF
    The identification of differentially regulated proteins in animal models of psychiatric diseases is essential for a comprehensive analysis of associated psychopathological processes. Mass spectrometry is the most relevant method for analyzing differences in protein expression of tissue and body fluid proteomes. However, standardization of sample handling and sample-to-sample variability are problematic. Stable isotope metabolic labeling of a proteome represents the gold standard for quantitative mass spectrometry analysis. The simultaneous processing of a mixture of labeled and unlabeled samples allows a sensitive and accurate comparative analysis between the respective proteomes. Here, we describe a cost-effective feeding protocol based on a newly developed 15N bacteria diet based on Ralstonia eutropha protein, which was applied to a mouse model for trait anxiety. Tissue from 15N-labeled vs. 14N-unlabeled mice was examined by mass spectrometry and differences in the expression of glyoxalase-1 (GLO1) and histidine triad nucleotide binding protein 2 (Hint2) proteins were correlated with the animals' psychopathological behaviors for methodological validation and proof of concept, respectively. Additionally, phenotyping unraveled an antidepressant-like effect of the incorporation of the stable isotope 15N into the proteome of highly anxious mice. This novel phenomenon is of considerable relevance to the metabolic labeling method and could provide an opportunity for the discovery of candidate proteins involved in depression-like behavior. The newly developed 15N bacteria diet provides researchers a novel tool to discover disease-relevant protein expression differences in mouse models using quantitative mass spectrometry

    Segmentation of Multi-Isotope Imaging Mass Spectrometry Data for Semi-Automatic Detection of Regions of Interest

    Get PDF
    Multi-isotope imaging mass spectrometry (MIMS) associates secondary ion mass spectrometry (SIMS) with detection of several atomic masses, the use of stable isotopes as labels, and affiliated quantitative image-analysis software. By associating image and measure, MIMS allows one to obtain quantitative information about biological processes in sub-cellular domains. MIMS can be applied to a wide range of biomedical problems, in particular metabolism and cell fate [1], [2], [3]. In order to obtain morphologically pertinent data from MIMS images, we have to define regions of interest (ROIs). ROIs are drawn by hand, a tedious and time-consuming process. We have developed and successfully applied a support vector machine (SVM) for segmentation of MIMS images that allows fast, semi-automatic boundary detection of regions of interests. Using the SVM, high-quality ROIs (as compared to an expert's manual delineation) were obtained for 2 types of images derived from unrelated data sets. This automation simplifies, accelerates and improves the post-processing analysis of MIMS images. This approach has been integrated into “Open MIMS,” an ImageJ-plugin for comprehensive analysis of MIMS images that is available online at http://www.nrims.hms.harvard.edu/NRIMS_ImageJ.php

    Anal. Chem.

    No full text

    J. Sep. Sci.

    No full text

    Antidepressant treatment effects on hippocampal protein turnover: Molecular and spatial insights from mass spectrometry

    No full text
    A major challenge in managing depression is that antidepressant drugs take a long time to exert their therapeutic effects. For the development of faster-acting treatments, it is crucial to get an improved understanding of the molecular mechanisms underlying antidepressant mode of action. Here, we used a novel mass spectrometry-based workflow to investigate how antidepressant treatment affects brain protein turnover at single-cell and subcellular resolution. We combined stable isotope metabolic labeling, quantitative Tandem Mass Spectrometry (qTMS) and Multi-isotope Imaging Mass Spectrometry (MIMS) to simultaneously quantify and image protein synthesis and turnover in hippocampi of mice treated with the antidepressant paroxetine. We identified changes in turnover of individual hippocampal proteins that reveal altered metabolism-mitochondrial processes and report on subregion-specific turnover patterns upon paroxetine treatment. This workflow can be used to investigate brain protein turnover changes in vivo upon pharmacological interventions at a resolution and precision that has not been possible with other methods to date. Our results reveal acute paroxetine effects on brain protein turnover and shed light on antidepressant mode of action
    corecore