3 research outputs found

    Electrical resonance of Amphotericin B channel activity in lipidic membranes

    No full text
    In our previous work [J. Membrane Biol. 237, 31 (2010)], we showed the dependence of the time average conductance of Nystatin channels as a function of the applied potential. Specifically, it was observed that greater potential induced enhanced channel activity. This indicates that the supramolecular structure could be stabilized by a large field, possibly by giving a preferential orientation to the monomers. In the present work, we entertain the notion that the process of pore formation in the lipidic membranes has an underlying deterministic component. To verify this hypothesis, experiments were performed under potentio-dynamic conditions, i.e., a square train of pulses of different frequencies (0.05-2 Hz) were applied to a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membrane having 30 mol. % cholesterol and the presence of 35 mu M Amphotericin B. An emergence of a resonant frequency, in the present experiments, is tantamount to observing fingerprints of determinism in the activity of these channels in lipidic membranes. Published by AIP Publishing

    Effect of Membrane Structure on the Action of Polyenes: I. Nystatin Action in Cholesterol- and Ergosterol-Containing Membranes

    No full text
    A detailed and thorough characterization of nystatin-induced permeability on lipid bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-containing ergosterol or cholesterol is presented. The results show that the same collection of transmembrane pores appears in membranes containing either sterol. The concentration range for the appearance of these pores is sterol-dependent. Another mechanism of action, membrane disruption, is also observed in ergosterol-POPC membranes. The greater potency of nystatin present in ergosterol-containing membranes cannot be explained simply by the longer opening times of its pores, as has been suggeste
    corecore