380 research outputs found

    Radiation Induced Fermion Resonance

    Get PDF
    The Dirac equation is solved for two novel terms which describe the interaction energy between the half integral spin of a fermion and the classical, circularly polarized, electromagnetic field. A simple experiment is suggested to test the new terms and the existence of radiation induced fermion resonance.Comment: latex, 4 pages, no figure

    Shape Invariant Potential and Semi-Unitary Transformations (SUT) for Supersymmetric Harmonic Oscillator in T4-Space

    Full text link
    Constructing the Semi - Unitary Transformation (SUT) to obtain the supersymmetric partner Hamiltonians for a one dimensional harmonic oscillator, it has been shown that under this transformation the supersymmetric partner loses its ground state in T^{4}- space while its eigen functions constitute a complete orthonormal basis in a subspace of full Hilbert space. Keywords: Supersymmetry, Superluminal Transformations, Semi Unitary Transformations. PACS No: 14.80L

    Superluminal X-shaped beams propagating without distortion along a coaxial guide

    Get PDF
    In a previous paper [Phys. Rev. E64 (2001) 066603; e-print physics/0001039], we showed that localized Superluminal solutions to the Maxwell equations exist, which propagate down (non-evanescence) regions of a metallic cylindrical waveguide. In this paper we construct analogous non-dispersive waves propagating along coaxial cables. Such new solutions, in general, consist in trains of (undistorted) Superluminal "X-shaped" pulses. Particular attention is paid to the construction of finite total energy solutions. Any results of this kind may find application in the other fields in which an essential role is played by a wave-equation (like acoustics, geophysics, etc.). [PACS nos.: 03.50.De; 41.20;Jb; 83.50.Vr; 62.30.+d; 43.60.+d; 91.30.Fn; 04.30.Nk; 42.25.Bs; 46.40.Cd; 52.35.Lv. Keywords: Wave equations; Wave propagation; Localized beams; Superluminal waves; Coaxial cables; Bidirectional decomposition; Bessel beams; X-shaped waves; Maxwell equations; Microwaves; Optics; Special relativity; Coaxial metallic waveguides; Acoustics; Seismology; Mechanical waves; Elastic waves; Guided gravitational waves.]Comment: plain LaTeX file (22 pages), plus 15 figures; in press in Phys. Rev.

    New localized Superluminal solutions to the wave equations with finite total energies and arbitrary frequencies

    Get PDF
    By a generalized bidirectional decomposition method, we obtain many new Superluminal localized solutions to the wave equation (for the electromagnetic case, in particular) which are suitable for arbitrary frequency bands; various of them being endowed with finite total energy. We construct, among the others, an infinite family of generalizations of the so-called "X-shaped" waves. [PACS nos.: 03.50.De; 41.20;Jb; 83.50.Vr; 62.30.+d; 43.60.+d; 91.30.Fn; 04.30.Nk; 42.25.Bs; 46.40.Cd; 52.35.Lv. Keywords: Wave equations; Wave propagation; Localized beams; Superluminal waves; Bidirectional decomposition; Bessel beams; X-shaped waves; Microwaves; Optics; Special relativity; Acoustics; Seismology; Mechanical waves; Elastic waves; Gravitational waves; Elementary particle physics].Comment: plain LaTeX file (29 pages), plus 11 figures. Replaced with addition of the FIGURES that were lacking (or poor) in the previous submissions. In press in Europ. Phys. Journal-
    corecore