154 research outputs found
Effects of atomic interactions on Quantum Accelerator Modes
We consider the influence of the inclusion of interatomic interactions on the
delta-kicked accelerator model. Our analysis concerns in particular quantum
accelerator modes, namely quantum ballistic transport near quantal resonances.
The atomic interaction is modelled by a Gross-Pitaevskii cubic nonlinearity,
and we address both attractive (focusing) and repulsive (defocusing) cases. The
most remarkable effect is enhancement or damping of the accelerator modes,
depending on the sign of the nonlinear parameter. We provide arguments showing
that the effect persists beyond mean-field description, and lies within the
experimentally accessible parameter range.Comment: 4 pages, 6 figure
Quantum Accelerator Modes near Higher-Order Resonances
Quantum Accelerator Modes have been experimentally observed, and
theoretically explained, in the dynamics of kicked cold atoms in the presence
of gravity, when the kicking period is close to a half-integer multiple of the
Talbot time. We generalize the theory to the case when the kicking period is
sufficiently close to any rational multiple of the Talbot time, and thus
predict new rich families of experimentally observable Quantum Accelerator
Modes.Comment: Inaccurate reference [12] has been amende
Delocalized and Resonant Quantum Transport in Nonlinear Generalizations of the Kicked Rotor Model
We analyze the effects of a nonlinear cubic perturbation on the delta-Kicked
Rotor. We consider two different models, in which the nonlinear term acts
either in the position or in the momentum representation. We numerically
investigate the modifications induced by the nonlinearity in the quantum
transport in both localized and resonant regimes and a comparison between the
results for the two models is presented. Analyzing the momentum distributions
and the increase of the mean square momentum, we find that the quantum
resonances asymptotically are very stable with respect to the nonlinear
perturbation of the rotor's phase evolution. For an intermittent time regime,
the nonlinearity even enhances the resonant quantum transport, leading to
superballistic motion.Comment: 8 pages, 10 figures; to appear in Phys. Rev.
Arnol'd Tongues and Quantum Accelerator Modes
The stable periodic orbits of an area-preserving map on the 2-torus, which is
formally a variant of the Standard Map, have been shown to explain the quantum
accelerator modes that were discovered in experiments with laser-cooled atoms.
We show that their parametric dependence exhibits Arnol'd-like tongues and
perform a perturbative analysis of such structures. We thus explain the
arithmetical organisation of the accelerator modes and discuss experimental
implications thereof.Comment: 20 pages, 6 encapsulated postscript figure
Decay of Quantum Accelerator Modes
Experimentally observable Quantum Accelerator Modes are used as a test case
for the study of some general aspects of quantum decay from classical stable
islands immersed in a chaotic sea. The modes are shown to correspond to
metastable states, analogous to the Wannier-Stark resonances. Different regimes
of tunneling, marked by different quantitative dependence of the lifetimes on
1/hbar, are identified, depending on the resolution of KAM substructures that
is achieved on the scale of hbar. The theory of Resonance Assisted Tunneling
introduced by Brodier, Schlagheck, and Ullmo [9], is revisited, and found to
well describe decay whenever applicable.Comment: 16 pages, 11 encapsulated postscript figures (figures with a better
resolution are available upon request to the authors); added reference for
section
- …