80 research outputs found

    La memoria

    Full text link
    La memoria es uno de los componentes principales del ordenador y uno de los conceptos en los que se basa cualquier ordenador, desde las primeras máquina de los años 40 hasta nuestros días. La idea de programa almacenado en la memoria es una característica común a todos ellos. La memoria principal de un ordenador es la memoria RAM, en la que se almacenan temporalmente las instrucciones y los datos de todos los programas que están actualmente en ejecución. Además de la memoria RAM, existen otros tipos de memoria. Las más habituales son las memorias ROM, CMOS.Rebollo Pedruelo, M. (2011). La memoria. http://hdl.handle.net/10251/1078

    Dispositivos de salida

    Full text link
    Los ordenadores necesitan dispositivos de salida para mostrar los resultados de las operaciones que realiza el ordenador. Los dispositivos de salida más usuales son dos: el monitor y la impresora. El monitor es un dispositivo que emite luz y con ella activa los puntos que forman la imagen en la pantalla. Dependiendo de la tecnología con la que están construidos, distinguiremos entre CRT y LCD. La calidad de la imagen depende de la resolución del monitor (el número de píxeles que puede mostrar). Encontramos pantallas que van desde las 5", como en el caso de los libros electrónicos, hasta las 30" que puede tener el monitor de un ordenador de sobremesa. Si necesitamos conservar una salida, las impresoras permiten obtener una copia impresa de lo que vemos en pantalla. Las impresoras más comunes son las de inyección de tinta, aunque existen otros tipos de impresoras como las láser o las impresoras fotográficas que permiten obtener resultados profesionales de mayor calidad o con mayor rapidez. La forma de conseguir las imágenes en ambos medios es distinta. En el caso de los monitores, se emplea un esquema RGB, ya que la luz se descompone en estos tres colores: rojo verde y azul (RGB por sus iniciales en inglés). En el caso de la luz reflejada, que es lo que vemos en el papel, los colores primarios son el cían, el amarillo y el magenta. Si añadimos el negro, tenemos los esquelas CMYK (también por los nombres de los colores correspondientes en inglés).Rebollo Pedruelo, M. (2011). Dispositivos de salida. http://hdl.handle.net/10251/1368

    Dispositivos de almacenamiento

    Full text link
    Los ordenadores necesitan dispositivos de almacenamiento para guardar de forma definitiva los datos con los que trabajan, ya que la información de la memoria principal se pierde cuando se interrumpe la corriente eléctrica. Hoy en día podemos encontrar 3 tipos de dispositivos, basados en tecnologías distintas para almacenar la información: (i) dispositivos magnéticos, como cintas, disquetes (ya en desuso) y discos duros, que son los más empleados; (ii) dispositivos ópticos, como CD-ROM, DVD y discos Blu-ray; (iii) memoria de estado sólido, comúnmente conocida como memoria flash, empleada en memorias USB, tarjetas y recientemente en discos SSD. A pesar de llamarse 'memoria', no debe confundirse con la RAM del ordenador: es un dispositivo de entrada/salida.Rebollo Pedruelo, M. (2011). Dispositivos de almacenamiento. http://hdl.handle.net/10251/1370

    Dispositivos de entrada

    Full text link
    Los dispositivos de entrada se emplean introducir la información que debe ser procesada en el ordenador. Los dispositivos más usuales son el teclado y el ratón. En ordenadores portátiles hay otros tipos de dispositivos señalizadores, como paneles táctiles con la misma función. Otros dispositivos están especializados en leer entradas en un formato determinados, como los códigos de barras, de puntos o los códigos QR actuales. Dado que la naturaleza de la información que podemos manipular es muy diversa, existen multitud de dispositivos de entrada adaptados a los distintos tipo de señales. En este caso es necesario convertir la información que proviene del mundo exterior, habitualmente en formato analógico, en formato digital, que puede ser almacenado y procesado en el ordenador. Los dispositivos que realizan esta función reciben en general el nombre de dispositivos digitalizadores. Principalmente nos encontraremos digitalizadores de imágenes, de audio y de vídeo (una combinación de los dos anteriores). En todos los casos el proceso es similar: se toman muestras discretas de la señal original y se convierten en valores binarios. Dependiendo del número de muestras que se tomen y del número de bits con los que se codifiquen los valores que se obtienen tendremos un archivo de mayor o menor calidad.Rebollo Pedruelo, M. (2011). Dispositivos de entrada. http://hdl.handle.net/10251/1368

    Supportive consensus

    Full text link
    [EN] The paper is concerned with the consensus problem in a multi-agent system such that each agent has boundary constraints. Classical Olfati-Saber's consensus algorithm converges to the same value of the consensus variable, and all the agents reach the same value. These algorithms find an equality solution. However, what happens when this equality solution is out of the range of some of the agents? In this case, this solution is not adequate for the proposed problem. In this paper, we propose a new kind of algorithms called supportive consensus where some agents of the network can compensate for the lack of capacity of other agents to reach the average value, and so obtain an acceptable solution for the proposed problem. Supportive consensus finds an equity solution. In the rest of the paper, we define the supportive consensus, analyze and demonstrate the network's capacity to compensate out of boundaries agents, propose different supportive consensus algorithms, and finally, provide some simulations to show the performance of the proposed algorithms.The author(s) received specific funding for this work from the Valencian Research Institute for Artificial Intelligence (VRAIN) where the authors are currently working. This work is partially supported by the Spanish Government project RTI2018-095390-B-C31, GVA-CEICE project PROMETEO/2018/002, and TAILOR, a project funded by EU Horizon 2020 research and innovation programme under GA No 952215. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Palomares Chust, A.; Rebollo Pedruelo, M.; Carrascosa Casamayor, C. (2020). Supportive consensus. PLoS ONE. 15(12):1-30. https://doi.org/10.1371/journal.pone.0243215S1301512Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and Cooperation in Networked Multi-Agent Systems. Proceedings of the IEEE, 95(1), 215-233. doi:10.1109/jproc.2006.887293Pérez, I. J., Cabrerizo, F. J., Alonso, S., Dong, Y. C., Chiclana, F., & Herrera-Viedma, E. (2018). On dynamic consensus processes in group decision making problems. Information Sciences, 459, 20-35. doi:10.1016/j.ins.2018.05.017Fischbacher, U., & Gächter, S. (2010). Social Preferences, Beliefs, and the Dynamics of Free Riding in Public Goods Experiments. American Economic Review, 100(1), 541-556. doi:10.1257/aer.100.1.541Du, S., Hu, L., & Song, M. (2016). Production optimization considering environmental performance and preference in the cap-and-trade system. Journal of Cleaner Production, 112, 1600-1607. doi:10.1016/j.jclepro.2014.08.086Alfonso, B., Botti, V., Garrido, A., & Giret, A. (2013). A MAS-based infrastructure for negotiation and its application to a water-right market. Information Systems Frontiers, 16(2), 183-199. doi:10.1007/s10796-013-9443-8Rebollo M, Carrascosa C, Palomares A. Consensus in Smart Grids for Decentralized Energy Management. In: Highlights of Practical Applications of Heterogeneous Multi-Agent Systems. The PAAMS Collection. Springer; 2014. p. 250–261.Zhao, T., & Ding, Z. (2018). Distributed Agent Consensus-Based Optimal Resource Management for Microgrids. IEEE Transactions on Sustainable Energy, 9(1), 443-452. doi:10.1109/tste.2017.2740833Qiu, Z., Liu, S., & Xie, L. (2018). Necessary and sufficient conditions for distributed constrained optimal consensus under bounded input. International Journal of Robust and Nonlinear Control, 28(6), 2619-2635. doi:10.1002/rnc.4040Wei Ren, & Beard, R. W. (2005). Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 50(5), 655-661. doi:10.1109/tac.2005.846556Ren, W., & Beard, R. W. (2008). Distributed Consensus in Multi-vehicle Cooperative Control. Communications and Control Engineering. doi:10.1007/978-1-84800-015-5Knorn F, Corless MJ, Shorten RN. A result on implicit consensus with application to emissions control. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference; 2011. p. 1299–1304.Roy, S. (2015). Scaled consensus. Automatica, 51, 259-262. doi:10.1016/j.automatica.2014.10.073Mo, L., & Lin, P. (2018). Distributed consensus of second-order multiagent systems with nonconvex input constraints. International Journal of Robust and Nonlinear Control, 28(11), 3657-3664. doi:10.1002/rnc.4076Wang, Q., Gao, H., Alsaadi, F., & Hayat, T. (2014). An overview of consensus problems in constrained multi-agent coordination. Systems Science & Control Engineering, 2(1), 275-284. doi:10.1080/21642583.2014.897658Xi, J., Yang, J., Liu, H., & Zheng, T. (2018). Adaptive guaranteed-performance consensus design for high-order multiagent systems. Information Sciences, 467, 1-14. doi:10.1016/j.ins.2018.07.069Fontan A, Shi G, Hu X, Altafini C. Interval consensus: A novel class of constrained consensus problems for multiagent networks. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC); 2017. p. 4155–4160.Hou, W., Wu, Z., Fu, M., & Zhang, H. (2018). Constrained consensus of discrete-time multi-agent systems with time delay. International Journal of Systems Science, 49(5), 947-953. doi:10.1080/00207721.2018.1433899Elhage N, Beal J. Laplacian-based consensus on spatial computers. In: AAMAS; 2010. p. 907–914.Cavalcante R, Rogers A, Jennings N. Consensus acceleration in multiagent systems with the Chebyshev semi-iterative method. In: Proc. of AAMAS’11; 2011. p. 165–172.Hu, H., Yu, L., Zhang, W.-A., & Song, H. (2013). Group consensus in multi-agent systems with hybrid protocol. Journal of the Franklin Institute, 350(3), 575-597. doi:10.1016/j.jfranklin.2012.12.020Ji, Z., Lin, H., & Yu, H. (2012). Leaders in multi-agent controllability under consensus algorithm and tree topology. Systems & Control Letters, 61(9), 918-925. doi:10.1016/j.sysconle.2012.06.003Li, Y., & Tan, C. (2019). A survey of the consensus for multi-agent systems. Systems Science & Control Engineering, 7(1), 468-482. doi:10.1080/21642583.2019.1695689Salazar, N., Rodriguez-Aguilar, J. A., & Arcos, J. L. (2010). Robust coordination in large convention spaces. AI Communications, 23(4), 357-372. doi:10.3233/aic-2010-0479Pedroche F, Rebollo M, Carrascosa C, Palomares A. On the convergence of weighted-average consensus. CoRR. 2013;abs/1307.7562

    Strategies for cooperation emergence in distributed service discovery

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis in Cybernetics and Systems on APR 3 2014], available online:http://www.tandfonline.com/10.1080/01969722.2014.894848[EN] In distributed environments where entities only have a partial view of the system, cooperation plays a key issue. In the case of decentralized service discovery in open agent societies, agents only know about the services they provide and who are their direct neighbors. Therefore, they need the cooperation of their neighbors in order to locate the required services. However, cooperation is not always present in open systems. Non-cooperative agents pursuing their own goals could refuse to forward queries from other agents to avoid the cost of this action; therefore, the efficiency of the decentralized service discovery could be seriously damaged. In this paper, we propose the ombination of incentives and local structural changes in order to promote cooperation in the service discovery process. The results show that, even in scenarios where the predominant behavior is not collaborative cooperation emerges.The work was partially supported by the Spanish Ministry of Science and Innovation through grants TIN2009-13839-C03-01, TIN2012-36586-C03-01, CSD2007-0022 (CONSOLIDER-INGENIO 2010).Del Val Noguera, E.; Rebollo Pedruelo, M.; Botti, V. (2014). Strategies for cooperation emergence in distributed service discovery. Cybernetics and Systems. 45(3):220-240. https://doi.org/10.1080/01969722.2014.894848S220240453Blanc , A. , Y.K. Liu , and A. Vahdat . “Designing Incentives for Peer-to-Peer Routing.” InProceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies, Vol. 1, pp. 374–385, 2005 .del Val , E. “Semantic Service Management in Service-Oriented Multi-Agent Systems.” Ph.D. thesis, Departament de Sistemes Informàtics i Computació, Universitat Politècnica de València, 2013 .Del Val, E., Rebollo, M., & Botti, V. (2012). Enhancing decentralized service discovery in open service-oriented multi-agent systems. Autonomous Agents and Multi-Agent Systems, 28(1), 1-30. doi:10.1007/s10458-012-9210-0DORAN, J. E., FRANKLIN, S., JENNINGS, N. R., & NORMAN, T. J. (1997). On cooperation in multi-agent systems. The Knowledge Engineering Review, 12(3), 309-314. doi:10.1017/s0269888997003111Eguíluz, V. M., Zimmermann, M. G., Cela‐Conde, C. J., & Miguel, M. S. (2005). Cooperation and the Emergence of Role Differentiation in the Dynamics of Social Networks. American Journal of Sociology, 110(4), 977-1008. doi:10.1086/428716Griffiths , N. and M. Luck . “Changing Neighbours: Improving Tag-Based Cooperation.” InProceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1.(AAMAS'10), 249–256. Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems, 2010 .Gu , B. and S. Jarvenpaa . “Are Contributions to p2p Technical Forums Private or Public Goods? An Empirical Investigation.” Paper presented at the 1st Workshop on Economics of Peer-to-Peer Systems, June 4–5, 2004, Harvard University .Hauert, C., Traulsen, A., Brandt, H., Nowak, M. A., & Sigmund, K. (2007). Via Freedom to Coercion: The Emergence of Costly Punishment. Science, 316(5833), 1905-1907. doi:10.1126/science.1141588Hofmann , L.M. , N. Chakraborty , and K. Sycara . “The Evolution of Cooperation in Self-Interested Agent Societies: A Critical Study.” InProceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems, Volume 2 , edited by K. Tumer , P. Yolum , L. Sonenberg , and P. Stone , 685–692. IFAAMAS, 2011 .Lin, W. S., Zhao, H. V., & Liu, K. J. R. (2009). Incentive Cooperation Strategies for Peer-to-Peer Live Multimedia Streaming Social Networks. IEEE Transactions on Multimedia, 11(3), 396-412. doi:10.1109/tmm.2009.2012915Nowak, M. A. (2006). Five Rules for the Evolution of Cooperation. Science, 314(5805), 1560-1563. doi:10.1126/science.1133755Nowak, M. A., & Sigmund, K. (1998). Evolution of indirect reciprocity by image scoring. Nature, 393(6685), 573-577. doi:10.1038/31225Ohtsuki, H., Hauert, C., Lieberman, E., & Nowak, M. A. (2006). A simple rule for the evolution of cooperation on graphs and social networks. Nature, 441(7092), 502-505. doi:10.1038/nature04605Santos, F. C., Santos, M. D., & Pacheco, J. M. (2008). Social diversity promotes the emergence of cooperation in public goods games. Nature, 454(7201), 213-216. doi:10.1038/nature06940Shneidman , J. and D. C. Parkes . “Rationality and Self-Interest in Peer to Peer Networks.” Paper presented at the 2nd Int. Workshop on Peer-to-Peer Systems (IPTPS’03), February 20–21, 2003, Berkeley, CA .Sigmund, K. (2007). Punish or perish? Retaliation and collaboration among humans. Trends in Ecology & Evolution, 22(11), 593-600. doi:10.1016/j.tree.2007.06.012Sigmund, K. (2009). Sympathy and similarity: The evolutionary dynamics of cooperation. Proceedings of the National Academy of Sciences, 106(21), 8405-8406. doi:10.1073/pnas.0903947106Sigmund, K., Hauert, C., & Nowak, M. A. (2001). Reward and punishment. Proceedings of the National Academy of Sciences, 98(19), 10757-10762. doi:10.1073/pnas.161155698Sun , Q. and H. Garcia-Molina . “Slic: A Selfish Link-Based Incentive Mechanism for Unstructured Peer-To-Peer Networks.” Paper presented at the 24th International Conference on Distributed Computing Systems (ICDCS’04), March 23–26, 2004, Washington, DC .Villatoro , D. , J. Sabater-Mir , and S. Sen . “Social Instruments for Robust Convention Emergence.”Proceedings of the International Joint Conference on Artificial Intelligence, edited by T. Walsh, 420–425, 2011

    Improvement of Contact Tracing with Citizen's Distributed Risk Maps

    Full text link
    [EN] The rapid spread of COVID-19 has demonstrated the need for accurate information to contain its diffusion. Technological solutions are a complement that can help citizens to be informed about the risk in their environment. Although measures such as contact traceability have been successful in some countries, their use raises society's resistance. This paper proposes a variation of the consensus processes in directed networks to create a risk map of a determined area. The process shares information with trusted contacts: people we would notify in the case of being infected. When the process converges, each participant would have obtained the risk map for the selected zone. The results are compared with the pilot project's impact testing of the Spanish contact tracing app (RadarCOVID). The paper also depicts the results combining both strategies: contact tracing to detect potential infections and risk maps to avoid movements into conflictive areas. Although some works affirm that contact tracing apps need 60% of users to control the propagation, our results indicate that a 40% could be enough. On the other hand, the elaboration of risk maps could work with only 20% of active installations, but the effect is to delay the propagation instead of reducing the contagion. With both active strategies, this methodology is able to significantly reduce infected people with fewer participants.This research was supported by TAILOR, a project funded by EU Horizon 2020 research and innovation programme under GA No 952215, and by the Spanish Ministry of Science, Innovation and Universities (MICIU) under Contract No. PGC2018-093854-B-I00b and RTI2018-095390-B-C32.Rebollo Pedruelo, M.; Benito, RM.; Losada, JC.; Galeano, J. (2021). Improvement of Contact Tracing with Citizen's Distributed Risk Maps. Entropy. 23(5):1-21. https://doi.org/10.3390/e23050638S12123

    Analyzing urban mobility paths based on users' activity in social networks

    Full text link
    [EN] This work presents an approach to model how the activity in social media of the citizens reflects the activity in the city. The proposal includes a gravitational model that deforms the surface of the city based on the intensity of the activity in different zones. The information is extracted from geolocated tweets (n = 1.48 x 10(6)). Furthermore, this activity affects how people move in a city. The path a user follows is calculated using the geolocation of the tweets that he or she publishes along the day. Several models are evaluated and compared using the Hausdorfs distance (d(H)). The combination of gravitational potential with attraction to the destination points provides the best results, with d(H) = 1176 against the Manhattan (d(H) = 1203) or the geodesic (d(H) = 1417) alternatives. Finally, the analysis is repeated with the data segmented by gender (n=2,826 paths, men=1,910, women=916). The results validate (p=0.000334) the studies that affirm that men travel longer distances (d(M) = 4.73 km, alpha(m) = 26.1 degrees) with rectilinear trajectories, whereas women have shorter and more angled paths (d(w) = 4.5 km, alpha(w) = 32.2 degrees), obtaining p values in path lengths and p=0.006 in the angles. (C) 2019 Elsevier B.V. All rights reserved.This work is partially supported by Spanish Government Project TIN2015-65515-C4-1-R and the Post-doc grant Ref. SP20170057.Rodríguez, L.; Palanca Cámara, J.; Del Val Noguera, E.; Rebollo Pedruelo, M. (2020). Analyzing urban mobility paths based on users' activity in social networks. Future Generation Computer Systems. 102:333-346. https://doi.org/10.1016/j.future.2019.07.072S33334610

    Does the type of event influence how user interactions evolve on Twitter?

    Full text link
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThe number of people using on-line social networks as a new way of communication is continually increasing. The messages that a user writes in these networks and his/her interactions with other users leave a digital trace that is recorded. Thanks to this fact and the use of network theory, the analysis of messages, user interactions, and the complex structures that emerge is greatly facilitated. In addition, information generated in on-line social networks is labeled temporarily, which makes it possible to go a step further analyzing the dynamics of the interaction patterns. In this article, we present an analysis of the evolution of user interactions that take place in television, socio-political, conference, and keynote events on Twitter. Interactions have been modeled as networks that are annotated with the time markers. We study changes in the structural properties at both the network level and the node level. As a result of this analysis, we have detected patterns of network evolution and common structural features as well as differences among the events.The author(s) received specific funding for this work from the research group (Grupo de Inteligencia Informatica e Inteligencia Artificial) where the authors are currently working. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Del Val Noguera, E.; Rebollo Pedruelo, M.; Botti Navarro, VJ. (2015). Does the type of event influence how user interactions evolve on Twitter?. PLoS ONE. 10(5):21-53. https://doi.org/10.1371/journal.pone.0124049S2153105Licoppe, C., & Smoreda, Z. (2005). Are social networks technologically embedded? Social Networks, 27(4), 317-335. doi:10.1016/j.socnet.2004.11.001European Commission. JRC Scientific and Policy Report EUR 25295 EN ‘Pan-European Survey of Practices, Attitudes and Policy Preferences as regards Personal Identity Data Management’; 2012. http://is.jrc.ec.europa.eu/pages/TFS/documents/EIDSURVEY_Web_001.pdf Last access: 27-01-2015.Jansen, B. J., Zhang, M., Sobel, K., & Chowdury, A. (2009). Twitter power: Tweets as electronic word of mouth. Journal of the American Society for Information Science and Technology, 60(11), 2169-2188. doi:10.1002/asi.21149Leskovec, J., Adamic, L. A., & Huberman, B. A. (2007). The dynamics of viral marketing. ACM Transactions on the Web, 1(1), 5-es. doi:10.1145/1232722.1232727Guimerà, R., Llorente, A., Moro, E., & Sales-Pardo, M. (2012). Predicting Human Preferences Using the Block Structure of Complex Social Networks. PLoS ONE, 7(9), e44620. doi:10.1371/journal.pone.0044620Borondo J, Morales AJ, Losada JC, Benito RM. Characterizing and modeling an electoral campaign in the context of Twitter: 2011 Spanish Presidential Election as a case study.; 2013.Ahn YY, Han S, Kwak H, Moon S, Jeong H. Analysis of Topological Characteristics of Huge Online Social Networking Services. In: Proceedings of the 16th International Conference on World Wide Web. WWW ‘07. New York, NY, USA: ACM; 2007. p. 835–844.Romero DM, Galuba W, Asur S, Huberman BA. Influence and Passivity in Social Media. In: Proceedings of the 20th International Conference Companion on World Wide Web. WWW ‘11. New York, NY, USA: ACM; 2011. p. 113–114.Romero DM, Meeder B, Kleinberg J. Differences in the Mechanics of Information Diffusion Across Topics: Idioms, Political Hashtags, and Complex Contagion on Twitter. In: Proceedings of the 20th International Conference on World Wide Web. WWW ‘11. New York, NY, USA: ACM; 2011. p. 695–704.Bastiaensens, S., Vandebosch, H., Poels, K., Van Cleemput, K., DeSmet, A., & De Bourdeaudhuij, I. (2014). Cyberbullying on social network sites. An experimental study into bystanders’ behavioural intentions to help the victim or reinforce the bully. Computers in Human Behavior, 31, 259-271. doi:10.1016/j.chb.2013.10.036Google. Google Co-op; 2014. [Access 5-Jan-2014]. http://www.google.com/coop/Wasserman, S., & Faust, K. (1994). Social Network Analysis. doi:10.1017/cbo9780511815478Kossinets, G. (2006). Empirical Analysis of an Evolving Social Network. Science, 311(5757), 88-90. doi:10.1126/science.1116869Scott, J. (2010). Social network analysis: developments, advances, and prospects. Social Network Analysis and Mining, 1(1), 21-26. doi:10.1007/s13278-010-0012-6Newman, M. (2010). Networks. doi:10.1093/acprof:oso/9780199206650.001.0001Huberman BA, Romero DM, Wu F. Social networks that matter: Twitter under the microscope. arXiv preprint arXiv:08121045. 2008;.Mislove A, Marcon M, Gummadi KP, Druschel P, Bhattacharjee B. Measurement and Analysis of Online Social Networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement. IMC ‘07. New York, NY, USA: ACM; 2007. p. 29–42.Borge-Holthoefer, J., Rivero, A., García, I., Cauhé, E., Ferrer, A., Ferrer, D., … Moreno, Y. (2011). Structural and Dynamical Patterns on Online Social Networks: The Spanish May 15th Movement as a Case Study. PLoS ONE, 6(8), e23883. doi:10.1371/journal.pone.0023883na López IP, Congosto M, Aragón P. Spanish Indignados and the evolution of 15M: towards networked para-institutions. Big Data: Challenges and Opportunities. 2013;p. 359–386.Cha M, Haddadi H, Benevenuto F, Gummadi KP. Measuring user influence in Twitter: The million follower fallacy. In: in ICWSM ‘10: Proceedings of international AAAI Conference on Weblogs and Social; 2010.Shamma DA, Kennedy L, Churchill EF. Tweet the Debates: Understanding Community Annotation of Uncollected Sources. In: Proceedings of the First SIGMM Workshop on Social Media. WSM ‘09. New York, NY, USA: ACM; 2009. p. 3–10. Available from: http://doi.acm.org/10.1145/1631144.1631148Diakopoulos NA, Shamma DA. Characterizing Debate Performance via Aggregated Twitter Sentiment. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ‘10. ACM; 2010. p. 1195–1198

    Convergence of Weighted-average consensus for undirected graphs

    Full text link
    [EN] In this note we address the problem of reaching a consensus in an undirected network where the nodes interchange information with their neighbors. Each node is provided with a value X_i and a weight w_i. The specific goal of the consensus is that each node will be aware of the weighted-average consensus value, in a distributed way, that is to say without a central control. We show the applicability of a theoretical result about reaching a consensus following an iterative algorithm.This work is supported by Spanish DGI grant MTM2010-18674, Consolider Ingenio CSD2007-00022, PROMETEO 2008/051, OVAMAH TIN2009-13839-C03-01, and PAID-06-11-2084.Pedroche Sánchez, F.; Rebollo Pedruelo, M.; Carrascosa Casamayor, C.; Palomares Chust, A. (2014). Convergence of Weighted-average consensus for undirected graphs. International Journal of Complex Systems in Science. 4(1):13-16. http://hdl.handle.net/10251/46244S13164
    corecore