26 research outputs found

    Methylprednisolone Treatment in Brain Death-Induced Lung Inflammation-A Dose Comparative Study in Rats

    Get PDF
    Background: The process of brain death (BD) leads to a pro-inflammatory state of the donor lung, which deteriorates its quality. In an attempt to preserve lung quality, methylprednisolone is widely recommended in donor lung management. However, clinical treatment doses vary and the dose-effect relation of methylprednisolone on BD-induced lung inflammation remains unknown. The aim of this study was to investigate the effect of three different doses methylprednisolone on the BD-induced inflammatory response. Methods: BD was induced in rats by inflation of a Fogarty balloon catheter in the epidural space. After 60 min of BD, saline or methylprednisolone (low dose (5 mg/kg), intermediate dose (12.5 mg/kg) or high dose (22.5 mg/kg)) was administered intravenously. The lungs were procured and processed after 4 h of BD. Inflammatory gene expressions were analyzed by RT-qPCR and influx of neutrophils and macrophages were quantified with immunohistochemical staining. Results: Methylprednisolone treatment reduced neutrophil chemotaxis as demonstrated by lower IL-8-like CINC-1 and E-selectin levels, which was most evident in rats treated with intermediate and high doses methylprednisolone. Macrophage chemotaxis was attenuated in all methylprednisolone treated rats, as corroborated by lower MCP-1 levels compared to saline treated rats. Thereby, all doses methylprednisolone reduced TNF-alpha, IL-6 and IL-1 beta tissue levels. In addition, intermediate and high doses methylprednisolone induced a protective anti-inflammatory response, as reflected by upregulated IL-10 expression when compared to saline treated brain-dead rats. Conclusion: We showed that intermediate and high doses methylprednisolone share most potential to target BD-induced lung inflammation in rats. Considering possible side effects of high doses methylprednisolone, we conclude from this study that an intermediate dose of 12.5 mg/kg methylprednisolone is the optimal treatment dose for BD-induced lung inflammation in rats, which reduces the pro-inflammatory state and additionally promotes a protective, anti-inflammatory response

    Slow induction of brain death leads to decreased renal function and increased hepatic apoptosis in rats

    Get PDF
    Background: Donor brain death (BD) is an independent risk factor for graft survival in recipients. While in some patients BD results from a fast increase in intracranial pressure, usually associated with trauma, in others, intracranial pressure increases more slowly. The speed of intracranial pressure increase may be a possible risk factor for renal and hepatic graft dysfunction. This study aims to assess the effect of speed of BD induction on renal and hepatic injury markers. Methods: BD induction was performed in 64 mechanically ventilated male Fisher rats by inflating a 4.0F Fogarty catheter in the epidural space. Rats were observed for 0.5, 1, 2 or 4 h following BD induction. Slow induction was achieved by inflating the balloon-catheter at a speed of 0.015 ml/min until confirmation of BD. Fast induction was achieved by inflating the balloon at 0.45 ml/min for 1 min. Plasma, kidney and liver tissue were collected for analysis. Results: Slow BD induction led to higher plasma creatinine at all time points compared to fast induction. Furthermore, slow induction led to increased renal mRNA expression of IL-6, and renal MDA values after 4 h of BD compared to fast induction. Hepatic mRNA expression of TNF-alpha, Bax/Bcl-2, and protein expression of caspase-3 was significantly higher due to slow induction after 4 h of BD compared to fast induction. PMN infiltration was not different between fast and slow induction in both renal and hepatic tissue. Conclusion: Slow induction of BD leads to poorer renal function compared to fast induction. Renal inflammatory and oxidative stress markers were increased. Liver function was not affected by speed of BD induction but hepatic inflammatory and apoptosis markers increased significantly due to slow induction compared to fast induction. These results provide initial proof that speed of BD induction influences detrimental renal and hepatic processes which could signify different donor management strategies for patients progressing to BD at different speeds

    Dung removal increases under higher dung beetle functional diversity regardless of grazing intensification

    Full text link
    Dung removal by macrofauna such as dung beetles is an important process for nutrient cycling in pasturelands. Intensification of farming practices generally reduces species and functional diversity of terrestrial invertebrates, which may negatively affect ecosystem services. Here, we investigate the effects of cattle-grazing intensification on dung removal by dung beetles in field experiments replicated in 38 pastures around the world. Within each study site, we measured dung removal in pastures managed with low- and high-intensity regimes to assess between-regime differences in dung beetle diversity and dung removal, whilst also considering climate and regional variations. The impacts of intensification were heterogeneous, either diminishing or increasing dung beetle species richness, functional diversity, and dung removal rates. The effects of beetle diversity on dung removal were more variable across sites than within sites. Dung removal increased with species richness across sites, while functional diversity consistently enhanced dung removal within sites, independently of cattle grazing intensity or climate. Our findings indicate that, despite intensified cattle stocking rates, ecosystem services related to decomposition and nutrient cycling can be maintained when a functionally diverse dung beetle community inhabits the human-modified landscape

    Reconstructing ecological networks with noisy dynamics

    No full text
    Ecosystems functioning is based on an intricate web of interactions among living entities. Most of these interactions are difficult to observe, especially when the diversity of interacting entities is large and they are of small size and abundance. To sidestep this limitation, it has become common to infer the network structure of ecosystems from time series of species abundance, but it is not clear how well can networks be reconstructed, especially in the presence of stochasticity that propagates through ecological networks. We evaluate the effects of intrinsic noise and network topology on the performance of different methods of inferring network structure from time-series data. Analysis of seven different four-species motifs using a stochastic model demonstrates that star-shaped motifs are differentially detected by these methods while rings are differentially constructed. The ability to reconstruct the network is unaffected by the magnitude of stochasticity in the population dynamics. Instead, interaction between the stochastic and deterministic parts of the system determines the path that the whole system takes to equilibrium and shapes the species covariance. We highlight the effects of long transients on the path to equilibrium and suggest a path forward for developing more ecologically sound statistical techniques
    corecore