3 research outputs found

    Mortality of Different <i>Populus</i> Genotypes in Recently Established Mixed Short Rotation Coppice with <i>Robinia pseudoacacia</i> L.

    No full text
    Short rotation coppices play an increasing role in providing wooden biomass for energy. Mixing fast-growing tree species in short rotation coppices may result in complementary effects and increased yield. The aim of this study was to analyze the effect on mortality of eight different poplar genotypes (Populus sp.) in mixed short rotation coppices with three different provenances of the N-fixing tree species black locust (Robinia pseudoacacia L.). Pure and mixed stands were established at two sites of contrasting fertility. Survival of poplar was assessed for each tree two times a year, for a period of three years. In the first two years, high variation in mortality was observed between the genotypes, but no significant differences between pure and mixed stands were identified. However, three years after planting, higher mortality rates were observed in the mixtures across all poplar genotypes in comparison to pure stands. The expected advantage on growth of combining an N-fixing tree with an N-demanding tree species, such as poplar, was overshadowed by the Robinia&#8217;s dominance and competitiveness

    Response of Poplar Leaf Transcriptome to Changed Management and Environmental Conditions in Pure and Mixed with Black Locust Stands

    No full text
    Mixed cropping in short rotation coppice can be an alternative to monocultures. To design optimized mixtures, field trials are needed. Poplar, as an economically important and fast-growing species, and black locust, as a nitrogen-fixing species, are promising candidates for such studies. RNA sequencing (RNA-seq) was used to monitor effects of mixed and pure cultivations on the gene expression of poplar along with growth measurements during 2017 and 2018. Both biomass production and leaf transcriptomes revealed a strong competition pressure of black locust and the abiotic environment on poplar trees. Gene expression differed between the two study sites and pure and mixed stands. Shading effects from black locust caused the downregulation of photosynthesis and upregulation of shade avoidance genes in mixed stands in 2017. As a result of higher light availability after cutting black locust, plant organ development genes were upregulated in mixed stands in 2018. Drought conditions during the summer of 2018 and competition for water between the two species caused the upregulation of drought stress response genes in mixed stands and at the unfavorable growing site. Further investigations are required to discover the mechanisms of interspecific competition and to develop stand designs, which could increase the success and productivity of mixed plantations
    corecore