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Abstract 

Based on interactions between landscape characteristics and precipitation inputs, watersheds 

respond differently to different climatic inputs. The objective of this study was to quantitatively 

characterize controls on runoff generation from two first order micro-catchments in the Amazonia 

region. The study investigated the variation of hydrological signatures at micro-catchment scale, 

and relates these to landscape and land cover differences and weather descriptors that control the 

observed responses. One catchment is a pasture cleared of all natural vegetation in the early 1980’s 

and the second catchment is a primary tropical forest with minor signs of disturbance. Water levels 

and meteorological variables were continuously monitored during the study period (December 

2012-May 2013). Water level measurements were converted to discharge, evapotranspiration was 

quantified using Penman-Monteith equation and catchment pedohydrological properties were also 

determined. During the study period, mean total rainfall was 1200 mm and runoff ratios were 0.79 

and 0.47 for the pasture and forest catchments, respectively. Base flow index was relatively higher 

in the forest catchment (0.76) compared to pasture catchment (0.63). Results from this study 

showed that the pasture catchment had a 35% higher mean stream flow. Analysis of selected 

individual rainstorm events also showed peak discharges were attained much faster in the pasture 

catchment compared to the forest catchment. At both sites, rainfall-runoff responses were highly 

dependent on surface and subsurface flow generation. Overland flow was observed in the pasture 

site during intense rainfall events. The pasture catchment exhibited higher event water contribution 

than the forest catchment. Findings from this research suggest that shallow lateral pathways play a 

significant role in controlling runoff generation processes in the forest catchment, while infiltration 

excess runoff generation processes dominate in the pasture catchment. Results from this study 

suggest that the conversion of forest to pasture may lead to important changes in runoff generation 

processes and water storage in these head water catchments. 

Key Words: hydrological processes, spatial and temporal variations, water balance, land cover, 

Amazonia.  

 

 

 

 

 

INTRODUCTION AND OBJECTIVES 



 

Even though there is a general agreement on the importance of the Amazonia forest to world’s 

climate, rainfall patterns and water resources, there is relatively limited research on examining the 

influences of land use changes on catchment hydrology in the humid tropics (Roa-Garcia and 

Weiler, 2010; Roa-Garcia et al., 2011). Tropical forest watersheds are valuable terrestrial 

ecosystems for biodiversity and provision of water related ecosystem services (Hamilton et al., 

1995; Tognetti et al., 2010; Zadroga, 1981). However, dramatic degradation in these ecosystems 

have occurred in  the last few decades (Scatena et al., 2010). While there is substantial evidence 

that the conversion of forest to pasture or crops in the tropics is associated with an increase in 

annual stream flow totals because of the lower evapotranspiration of the replacement vegetation, 

there have been reports of diminished stream flows during the dry season, and in this respect, the 

effects of tropical forest conversion on catchment hydrology are even less understood (Bruijnzeel 

et al., 2011). Scientific conclusions and inferences generated from modeling efforts have often been 

tampered with limited field data and based on model parameter calibration and thus increased 

uncertainty in the model predictions. As stated by Blume et al. (2007), basin inter-comparison and 

maximization of the scientific value of available data sets, and field campaigns are important in 

order to generate data sets for catchments and watersheds in various study regions. 

Headwater catchments can be play a significant role in understanding the influence of 

anthropogenic and climate changes on stream flow dynamics because of their relatively small 

contributing areas which make them highly responsive to changes in energy, water, and chemical 

inputs (Roa‐García et al., 2011). The low-order streams in these catchments are the sources or 

origins for larger rivers and therefore may serve as useful indicators for different catchment 

stresses.  

Classical and recent studies show that hydrologic properties of catchments, including 

infiltration and hydraulic conductivity are strongly affected by various stresses (Alegre and Cassel, 



1996; Schoenholtz et al., 2000) and these properties play a key role in surface and sub-surface flow 

paths, and runoff generation (Elsenbeer, 2001; Elsenbeer and Lack, 1996) and subsequently 

hydrochemical dynamics. While the intensity and amount of rainfall is a key factor, recent studies 

give rise to the assumption that other factors than the amount of precipitation play an important 

role in controlling seasonal patterns of catchment hydrochemical signatures (Breitenbach et al., 

2010; Feng et al., 2009; Kebede and Travi, 2011; Lee et al., 2009). 

Schnorbus and Alila (2013) observed that land use change did not have a statistically 

significant (α = 0.05) impact on the peak flow distribution until a threshold level (20-30%) in spatial 

extent of the land use change (forest harvesting in their case). They also noted that the magnitude 

of peak flow change is a function of changes in input fluxes (rainfall minus evapotranspiration) 

and changes in runoff synchronization, which directly affect peak discharge magnitude and timing. 

Thus understanding catchment characteristics is an important prerequisite to evaluating effects of 

various (anthropogenic and climatic drivers) in catchment hydrological responses, and subsequent 

hydro chemical dynamics. 

As outlined by Pfeffer et al. (2013), existing data and knowledge points out the central role 

of land use and confirm that land cover changes have a greater impact on runoff production than 

the rainfall deficit [Séguis et al., 2004; Boulain et al.,2009; Massuel et al., 2011]. However, as 

highlighted by Cappelaere et al., (2009), finer process understanding is needed to understand and 

explain the observed surface fluxes and improve future water management scenarios.  

Results presented in this  paper are part of a project which aims to develop a decision 

support tool to alleviate land use intensification associated problems such as losses of ecosystem 

services like the loss of natural vegetation and associated ecosystem functions in the global and 

regional climate system, increasing emissions of greenhouse gases (GHG), and the reduction of 

livelihoods. This paper examines the rainfall runoff relationships and the various controls of 



catchment hydrology in micro-catchments in which a further source of variability in the study 

catchments is the contrasting land use. We focused our study in a natural forest catchment and a 

pasture catchment in which the original forest trees have been removed and replaced with 

Brachiaria brisanta grass for intensive cattle rearing. To reduce the effect of spatial variability, 

typical for the medium-sized and large basins, this study focuses on micro-catchments less than 1 

km2 in spatial extent. The objective of the study was to understand how stream flow is conditioned 

by microclimate, precipitation pattern, land cover and soil properties, amongst other catchment 

properties. We examine the catchment physiographic characteristic in relation to observed stream 

flow dynamics for selected rain storms and also how these are likely related to current land use and 

land cover patterns. This paper is a contribution to the understanding of process hydrology by 

characterizing the hydrological behavior of small headwater catchments in active deforestation 

zones of Southern Para State on the south east of the Amazonia.  

Our central hypothesis is that clearing for pastures and agricultural development leads to 

increased flashiness of catchment discharge dynamics and also reduces dry season flows. By 

quantifying the water balance components of the selected catchments we test the infiltration trade-

off hypothesis for tropical environments and the applicability of the linear reservoir concept. The 

following sections provide a description of the studied catchment; details of the chosen 

methodologies for the analysis; and an overview of results.  

 

  

 

 

 

 

 

 

STUDY SITE AND METHODS 

Location 



The experimental catchments are located within the boundaries of Fazenda Paraiso 

(7.042oS, 55.385oW), which is about 5km from the town of Novo Progresso in Southern Para Brazil 

(Figure1) and situated in the watershed of the Jamanxim River, one of the major southern sub-

tributaries of the Amazon River. The climate at the study area is humid tropical with a rainy season 

from November to April and a dry season that extends from May to October. Mean annual 

precipitation averages 1900 mm. Figure 2 shows typical soil profiles in the study area, and tables 

1 and 2 show the basic soil profile horizon characteristics for the two study catchments. The 

dominant soils are Lixisols (Haplustox / Latossolo vermelho-amarelo distrófico (Brazil 

classification)) with sandy clay texture (mean soil texture of 55% sand, 2% silt, and 43% clay) 

(Soil Survey Staff, 1999). Lixisols are related to the Oxisol order of the U.S. Soil Taxonomy. The 

pasture catchment with an area of 30 ha is covered by pasture grass (Brachiaria brisanta). The 

forest catchment with an area of 55 ha is located approximately 1.5 km from the pasture catchment, 

on the south eastern fringe of the farm is generally a natural forest with existing signs of 

vegetation/tree regrowth and the existence of tree logging sites.  

Methods 

Rainfall and weather data  

In order to capture the rainfall variability within the catchments, a network of tipping bucket 

rain gages was installed. In the pasture catchment, four tipping buckets with data loggers (Tinytag, 

Gemini, UK) were installed. Three tipping buckets were at the forest catchment. Each of the tipping 

buckets has a resolution of 0.2 mm and rainfall was recorded at 10 minutes intervals. A weather 

station was installed within the pasture catchment with sensors to measure total solar radiation, net 

solar radiation, temperature, relative humidity, wind speed and direction and rainfall. Data was 

logged on a 10 minute time interval using GP1 loggers. From this data, reference 

http://www.britannica.com/EBchecked/topic/436739/Oxisol


evapotranspiration was quantified using the Penman–Monteith equation following the procedure 

presented by Allen et al. (1998).  

ETo =
0.408∆(Rn−G)+γ

900

T+273
u2(es−ea)

∆+γ(1+0.34u2)
        (1) 

where:  

ETo reference evapotranspiration [mm/day], Rn surface net radiation [MJ/m2/day],G soil heat flux 

density [MJ m-2 day-1], T mean daily air temperature at 2m height [°C],u2 wind speed at 2m height 

[m s-1], es saturation vapor pressure [kPa],ea actual vapor pressure [kPa], es - ea saturation vapor 

pressure deficit [kPa], ∆ slope vapor pressure curve [kPa °C-1], γ psychrometric constant [kPa°C-

1]. The grassland vegetation in the pasture catchments is perennial grasses with minimal seasonal 

growth stage variation and few scattered trees and shrubs. Therefore uniform Kc values were 

utilized to estimate actual evapotranspiration. Similarly, in the forest catchment a relatively 

uniform canopy of hardwood trees 20-30m tall cover the entire catchment all year through and 

therefore a uniform Kc value was used to quantify actual evapotranspiration. 

Catchment Discharge 

At the catchment outlets, rectangular weirs were built and each weir was fitted with a DS 

5X multiparameter sonde (OTT) which measured water level, electrical conductivity, pH, turbidity, 

dissolved oxygen (LDO) and temperature at 15-minute intervals. The standard rectangular weir 

equation based on the Bernoulli equation was used to estimate the catchment discharge (flow rate). 

𝑄 =
2

3
𝐶𝑑𝑏(√2𝑔)ℎ

3

2          (2) 

where 

Q: discharge over weir (m3/s); Cd: discharge coefficient; b: weir length (m); h: head on weir (m) 

In order to understand the temporal dynamics in the hydrological response of the study catchments 

we examined the rainfall-run off relationships exhibited in the obtained discharge data for the time 



period from January 2013 to the end of May 2013. This coincides with the rainy season in the study 

area. A few rainy storms were missed in November and December due to delays in field equipment 

installation. 

Soil Moisture 

From a hydrologic viewpoint, soil moisture controls the partitioning of rainfall into runoff 

and infiltration and therefore has an important effect on the runoff behavior of catchments (Aubert 

et al., 2003). Time domain reflectometry (TDR) was used to monitor soil moisture dynamics. The 

TDR system was used to measure volumetric water content on a weekly basis, with TECANAT 

access tubes installed to a depth of 200 cm in two transects in each catchment. The study 

catchments feature a toposequence of landscape positions from a gently sloping upper plateau, a 

middle slope and a low-gradient valley bottom. Access tubes were installed along this 

toposequence and thus the measured soil moisture represents water content dynamics along this 

toposequence. We used a TRIME-PICO T3 probe (IMKO Micromodultechnik GmbH, Ettlingen, 

Germany) to take measurements of volumetric water content at the following soil depth intervals: 

0-20, 20-40, 40-60, 60-80, 80-100, 100-120, 120-140, 140-160 and 180-200 cm. Since the TRIME 

probe measures water content in an elliptical field, two measurements were taken at each depth 

increment and averaged to account for local and spatial variability in water content.  

Detailed hydraulic properties (saturated hydraulic conductivity and bulk density) 

characterizing these catchments was also quantified. A constant head permeameter (Amoozemeter) 

designed by Amoozegar (1989a) for in situ measurements above the water table was used to 

estimate hydraulic conductivity. This was done by augering a borehole at 25 cm depth and at 40 

cm depth, establishing a constant water head in the hole and calculating Ks from the steady-state 

infiltration rate using the Glover equation (Amoozegar, 1989b). We measured Ksat at 25 and 40 

cm.  Particle size distribution of the soils was measured using the pipette method (Gee and Bauder, 



1986) after chemical dispersion and removal of organic matter and carbonate contents. Soil bulk 

density was estimated using undisturbed samples dried in an oven at 105 oC (Burke et al., 1986). 

Soil particle density was measured in the laboratory using the pycnometer method of Blake and 

Hartge (1986) and total porosity was determined from bulk density and particle density values. 

Hydrograph separation 

In line with procedures utilized by Recha et al. (2012), for the study period, the stream 

hydrographs were normalized using the approximate catchment area in order to allow a comparison 

of the catchments. Using discharge data, the Runoff Ratio (RR) was quantified as the ratio of total 

runoff to total rainfall. The discharge data were further analyzed using hydrograph separation 

techniques implemented in the Web GIS-based Hydrograph Analysis Tool (WHAT) using the 

recursive digital filter method for base flow separation (Lim et al. 2005; Lim et al. 2010). From 

this analysis, we obtained base flow and storm flow components of the runoff ratio (RRBF and 

RRSF as the ratio of total base flow and storm flow to total rainfall, respectively). The base flow 

index (BFI) is the ratio of base flow to total discharge (Bloomfield et al. 2009). Flow duration 

curves were calculated to compare the differences in high, low, and median flows across the 

catchments (Vogel and Fennessey 1994). The Baker et al (2004) method was used to estimate 

catchment flashiness indices.  

 

 

 

Using the monitoring data, a water balance for each study catchment can be constructed as 

follows: 

P= R+ET +ΔS         (3) 

javascript:popRef2('bib6')
javascript:popRef2('bib74')


where P the rainfall, R is the surface water flow out of the catchment, ET is the evapotranspiration, 

and ΔS is the water content change in the unsaturated zone and recharge to saturated zone. ΔS, 

thus, includes lateral as well as vertical groundwater losses and gains from the catchment as well 

as error in estimating all mass balance components on the right hand side of Equation 3. Due to 

logistical difficulties and equipment shortages we could not quantify aquifer recharge and therefore 

in the water balance this term is lumped together with unsaturated zone water content. 

 

RESULTS AND DISCUSSION 

In this section, the results obtained from the two study catchments are presented. We 

analyze the rainfall characteristics, pattern and variability between these two sites and the major 

soil profile characteristics. After this, we present and discuss measured soil moisture dynamics 

over the study period, stream discharge characteristics and quantified actual evapotranspiration 

variations in the study catchments.  

Precipitation characteristics 

Figure 3 shows the daily rainfall amounts in each catchment. During the study period 

(December 2012 to May 2013) the pasture catchment received 1254 mm of rainfall while 1190 mm 

was recorded in the forest catchment. Given the convective rainfall typical of the tropical regions 

we investigated spatial variability in daily rainfall amounts by comparing average daily 

accumulations recorded in the pasture site with those recorded by tipping buckets in the forest site. 

A scatter plot of the two sampling locations is shown in Figure 4. This figure shows high coefficient 

of determination (r2=0.84) between these two sites. Considering the small size of the study 

catchments this analysis can provide confidence of using rainfall from only one site and apply to 

the other site. Rain events occur simultaneously at both locations. Most of the rainstorms are mid-

afternoon storms of varying durations and peak intensities of 20mm/10min and 23mm/10min were 



observed in the pasture and forest catchments, respectively. Data analysis also shows the typical 

short, intense nature of tropical storms with mean storm duration of about 2 hours. 

 

Soil Profile Characteristics 

The forest catchment had a markedly lower mean bulk density (1.2g cm-3) than the pasture 

catchment (1.42g cm-3). This difference may be attributed to the higher root penetration and lack 

of compaction by the cattle in the forest catchment. The forest catchment exhibited a blocky 

structure while the pasture catchment had mainly blocky and platy structure. The platy structure in 

the pasture originates from compaction as a consequence of the operations for deforestation or 

cattle trampling. 

Results from this study show that the saturated hydraulic conductivity was relatively lower in the 

pasture catchment compared to the forest catchment. The low Ksat values in the pasture catchment 

can be an indication of the absence of a well-defined macro pore structure. The forest catchment 

had more than six times higher rate of saturated hydraulic conductivity than the pasture. That means 

moderately rapid infiltration and subsequently lower probability of runoff. Most probably the 

higher organic matter content and the lower bulk density in the forest favor the infiltration of water. 

Even though our study was only limited to two depths of measurements (25cm and 40cm), these 

results show relative anisotropy in Ksat with depth. Strong anisotropy has also been reported on 

oxisols in south western Amazonia (Elsenbeer et al., 1999). 

Soil Moisture variation 

From weekly soil moisture measurement data the average soil moisture content remained 

in the 15-35% range during most of the measurement period. While soil moisture measurements 

were done on a weekly basis, the lack of large peaks in soil moisture contents at both sites even 

one day after large rainfall events may suggest that there is rapid drainage in the soil profiles at 



these two sites. Drying out was also observed beginning at the top and decreasing with depth. As 

shown in Figure 5, generally soil moisture content variability between the two catchments was 

limited. The pasture catchment exhibited lower hydraulic conductivity, compared to the forest 

catchment. Therefore any greater surface inputs (rainfall) in the pasture catchment compared to the 

forest are likely offset by this difference in hydraulic conductivity. There is a general similarity in 

mean soil moisture contents between these two catchments. Maybe the drainage processes in these 

catchments behaves in similar ways and the soil profiles drain rapidly returning them to a standard 

level of water storage, maybe close to field capacity. This was observed by Hodnett et. al (1995) 

in central Amazonia catchments. Surface compaction in the pasture catchment will also likely be a 

reason for a delay in replenishment of soil moistures stores.  

In the forest site, the soil profile was generally shallower with bedrock and presence of 

hardpan horizon observed. These soils most probably have little water storage capacities and thus 

limited soil water reservoirs as shown by the low water contents and also the plinthic horizons 

promote subsurface flow generation. The high base flow values observed in the forest catchment 

also support this observation. The low water contents in the forest may also suggest the great 

influence of root water extraction in the forest site. This trend was also observed by Hodnett et al. 

(1995), who noted that the great variation in soil moisture content between pasture and forest 

catchments in the Amazon.  

As expected, Figure 5 also shows a general increase in soil moisture from the upslope to 

the bottom slope. Because the soil moisture measurements were manually done on weekly basis 

and at times suitable for field work, the highest soil moisture contents measured in both sites is 

likely to be between the saturation point and field capacity. In the pasture catchment the average 

Volumetric Moisture Content (VMC) was about 21% while in the forest catchment this was about 

24 %. These low VMC are typical in these lixisols which behave like sands in terms of water 



movement at low tensions but hold water like clay at high tensions (Sanchez (1976) in Hodnett et 

al. (1995). 

 

Catchment Discharge  

Figure 6 shows the peak daily stream lows at the 2 sites and Figure 7 shows the normalized 

daily discharges. During the study period, mean and peak discharges were higher in the pasture 

catchment  compared to the forest catchment. The mean discharge was 8mm/day in the pasture 

catchment and 5mm/day in the forest catchment and the peak discharge was 49 mm/day in the 

pasture catchment and 20 mm/day in the forest catchment. These results are similar to those 

obtained by Trancoso et al. (2007) in relatively similar catchments in the Amazon. These results 

show that land cover alterations impact on catchment water storage properties and this has direct 

effects on water quantity and water quality related ecosystem services. 

The relative hydrological behavior of the study catchments in a wet season as shown 

through the FDCs (Figure 8) provides evidence of the major rainfall runoff control processes. The 

Flow Duration Curves indicated that the pasture catchment exhibits almost 50% high flows (0 to 

5th percentiles on FDC) than the forest catchment. The pasture catchment discharges more water 

at all percentages of time that the discharge is equaled or exceeded. For example, a 10mm/day 

runoff is equaled or exceeded in the pasture catchment for 30% of the time while in the forest it is 

exceeded only for 10% of the time. Differences between the FDC’s are limited during the low flow 

periods. To illustrate characteristics of individual flow events in the study catchments, two 

hydrographs were plotted for the rainfall storms of March 23th 2013 (Figure 9). The runoff response 

was much faster in the pasture catchment with an average lag time of 25 minutes compared to 60 

minutes for the forest catchment. In the forest catchment, the hydrograph shows a delayed response 

suggesting that sub surface flow and subsequent overland flow on saturated areas were important 



processes. As explained by Suryatmojo et al (2013), physical catchment parameters, such as slope, 

shape, main-stream slope and drainage density affect stream flow and influence the shape of the 

hydrograph through catchment storage, runoff speed, infiltration and soil water content. While the 

study catchments display similar patterns, when the flows begin to decline with the onset of the dry 

season, the flow of forest catchment decreases first. 

Hydrologic indices calculated from discharge data for these two catchments are shown in 

Table 2. For almost similar rainfall totals during the study period, discharge normalized to 

catchment area was higher in the pasture catchment (992 mm) compared to the forest catchment 

(584 mm). The average daily stream flow for the pasture catchment was 9.0 mm while it was 5.6 

mm for the forest catchment. Runoff ratios were significantly higher in the pasture catchment (0.79) 

than the forest catchment (0.46). However base flow contribution to stream flow was higher in the 

forest catchment (0.76) compared to the pasture (0.63).  

For selected representative rainstorms in the study catchments, the hydrographs are shown  

in Figure 10 (a-c) for the two study catchments. For the rainstorm on February 26th 2013, 46 mm 

of rain produced 7 mm discharge at peak discharge rates of 0.24 mm/10 min in the forest catchment 

while 55 mm of rain produced 31 mm of runoff at peak discharge rates of to 4 mm/10 min in the 

pasture catchment. The runoff coefficient for the pasture site was almost five times higher than for 

the forest catchment. The March 18th rainstorm (120 mm) produced 55 mm of runoff in the pasture 

catchment and on the same day 121 mm of rainfall produced only 26 mm runoff in the forest 

catchment. Similarly, on April 17th, 39 mm of rain produced 23 mm runoff in the pasture while 38 

mm of rain produced only 6 mm discharge in the forest catchment. These hydrologic signatures 

show the relationship between total precipitation, base flow and runoff, with land cover playing a 

significant role. As outlined by Bruijnzeel (2006), that even though it can be argued that a direct 

comparison of the catchments may lead to biased results because of inherent topographic 



differences between the two areas, it is pertinent to note that the relative size of the topographically 

controlled area potentially generating SOF was larger for the forest catchment than for the pasture. 

Thus, the larger peak flows observed for the pasture catchment cannot be attributed only to intrinsic 

differences in catchment topography. An increase of runoff in the pasture could mainly be 

attributed to an increase in infiltration excess (Hortonian) overland flow. As stated by Elsenbeer 

(2001) and Niedzialek and Ogden (2010), the observed runoff properties are typical of many 

tropical catchments with dominant source of water at the event scale being rapid lateral transport 

of water.  

Most of the rainfall intensities in the pasture exceeded the Ksat values near the surface and 

this may mean that there are high frequencies of Hortonian overland flows occurring at this site.  

Moraes et al. (2006) observed similar results in pasture catchments in Eastern Amazonia. The 

higher discharges of the pasture catchment could be explained by the compaction of soil upper 

layers by cattle grazing in the grasslands relative to the characteristics of soils in forest catchment. 

Compaction reduces rainfall infiltration, reducing groundwater replenishment and promotes 

surface flows (Bruijnzeel, 2004). As observed by Roa-Garcia (2011), the high flows in the pasture 

catchment also indicates a smaller water storage capacity and higher surface runoff rates, related 

to grasslands that have less capacity to store water than forests. In the forest catchments, higher Ks 

values were observed and usually forest soils are dominant in vertical flow paths (Williams et at., 

1997). However the occurrence of shallow impeding layers with the soil profiles in the forest result 

in significant increases in lateral flow contributing to stream flow. Overall results suggest that land 

use plays a significant role in any observed hydrologic signatures. The overall water balance for 

the study catchments during the study period (Table 4) shows that in the forest site, 49 % of all 

rainfall inputs were discharged from the catchment while for the pasture catchment this amounted 

to 79%. 



These catchment discharge results could provide important information on water storage, 

fluctuation and runoff in these tropical head water catchments and the ability of the ecosystems in 

the headwaters to regulate water flows. The transformation of the headwater catchments from 

forests and wetlands to grasslands and pastures is most likely contributing to the reduction in their 

water regulation capacity, as indicated by this research, and ultimately impacts on the potential of 

management to influence dry season flows and storm flow attenuation. 

Evapotranspiration 

Figure 11 shows time series of daily ET from each of the sites. The average ET in the forest 

catchment was 4.9 mm/day while in the pasture catchment the average daily ET was 3.6 mm/day. 

As asserted by Spracklen et al. (2012) that when forests are replaced by pasture or crops, 

evapotranspiration of moisture from soil and vegetation is often diminished, leading to reduced 

atmospheric humidity and potentially suppressing precipitation. Water budget calculation is a 

conceptual simple way to study the hydrological behavior of an ecosystem and provides a useful 

tool to assess the relative importance of the hydrological processes (Ingram, 1983; Price and 

Maloney, 1994). For the study catchments, water budget components for the study period are 

shown in Table 4. The quantification of ET using the semi empirical Penman–Monteith equation 

was based entirely on information provided by the meteorological station located in the pasture 

catchment. ET losses accounted for 35 % of the water losses in the pasture site and 47% in the 

forest site. On the basis of these data, replacing forests with pastures and grasslands produces an 

increase in annual water yield. However, Roa-Garcia et al 2010, notes that rather than this effect 

as the main driver for the increase in annual flows after forest clearing, in the tropics it appears to 

be the reduced infiltration capacity of the soil. 

SUMMARY AND CONCLUSIONS 



We investigated the rainfall runoff characteristics of two small headwater catchments. Land 

cover and catchment physiographic parameters play a significant role in the hydrologic responses 

of the catchments. Data from this study highlight linkages between land cover and the rainfall 

runoff characteristics as shown in the discharge hydrographs. Analyses of individual events have 

shown relative differences between forest and pasture sites in terms of the rainfall-runoff responses. 

The pasture catchment exhibits high instantaneous peak discharges compared to the forest 

catchment. The pasture catchment exhibited relatively rapid response to precipitation compared to 

the forest catchment. Normalized discharge was also higher in the pasture catchment which also 

exhibited higher runoff ratios compared to the forest catchment. Initial findings confirm that 

hydrological responses in these catchments are driven by various factors and depend not only on 

the watershed features but also on prior conditions and the characteristics of the rainfall episodes, 

e.g. intensity. Both catchments are underlain by soils with well defined, A, E and Bt Horizons. Soil 

moisture exhibits temporal variations following rainfall patterns and spatially showing the 

influence of topography. During the study period there is limited variation in moisture reservoirs 

in the study catchments, and both catchments also exhibited limited ranges in available water 

capacities. Results of this study highlight that land cover alterations and transformation of the 

headwater catchments from forests most likely contributes to the reduction in their water regulation 

capacity. While results presented here provide a useful initial assessment of catchment hydrological 

controls, further research is ongoing to better understand the influence of land use and soil moisture 

on discharge over a longer time period and also to characterize the influence on hydrochemical 

transport. Further work will use these data to validate hydrological models identifying the actual 

pathways of the water in the catchments, calculate mean transit times, and quantify associated 

hydro-chemical fluxes. 
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Table 1 Soil horizon characteristics in the study catchments 

 

Pasture: Clayic Lixisols 
Horizon 
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Depth (cm) Texture Color Bulk Density 
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Table 2. Saturated Hydraulic conductivity (cm/hr) measured at two depths and three different 

positions in the study catchments 

 

Catenal Position Measurement Depth Pasture Forest 

Upslope 
25cm 0.339 1.53 

40cm 1.66 0.915 

     

Middle Slope 
25cm 0.39 7.72 

40cm - 4.34 

     

Valley Bottom 
25cm 0.77 6.01 

40cm 0.95 7.88 
 

 

  



 

Table 3: Hydrological analysis and indices for the study catchments derived from rainfall runoff 

data for the period January to May 2013  

 

Index Pasture Catchment Forest Catchment 

Discharge (mm) 992 584 

RCa 0.791 0.466 

Storm Flow (mm) 371 154 

RCSF
b 0.296 0.123 

Base Flow (mm) 621 442 

RCBF
c 0.495 0.352 

BFId 0.626 0.757 

Flashiness Index 0.099 0.028 

a = total discharge/precipitation; b= storm flow/precipitation 

c= base flow/precipitation; d= base flow/total discharge 

 

 

  



 

 

Table 4: Results from a mass balance exercise with summations of rainfall, runoff, ET, and 

residuals over the study period (Jan-May 2013) for the study catchments 

 

Site Precipitation 

(P) (mm) 

Discharge 

(Q) (mm) 

Evapotranspiration 

ET (mm) 

Recharge and change 

in Storage (∆S)(mm) 

Pasture 

Catchment 

1254 992 445 -183 

Forest 

Catchment 

1190 584 560 46 

 

 
 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Study area location and study catchments instrumentation 
  

Pasture catchment 

Forest catchment 
Drawn by: K. Kovacs 

Pasture Catchment 

Forest Catchment 



 

  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Typical soil profiles in the two study catchments 
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(Photo: J. Rebola-Lichtenberg) 



 
 

Figure 3 Daily rainfall in the two study catchments. (Average of the tipping buckets) 
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Figure 4 Correlation between daily rainfall data from Forest and Pasture catchments  
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Figure 5 Time series of soil moisture (% vol.) at three catena positions in the forest and 

pasture catchments. 
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Figure 6 Peak discharges and areal average rainfall in the study catchments 
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Figure 7 Normalised discharges and areal average rainfall in the study catchments 
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Figure 8 Flow duration curves for daily discharge data from the study catchments 
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(a) Pasture catchment 

 

 
 

(b) Forest Catchment 

 

 

Figure 9  Storm hydrographs for the rainstorm on March 23 2013 for the two study catchments 
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Figure 10 Example storm hydrographs from the two catchments. Precipitation (P, mm), maximum 

intensity of precipitation (mm/10 min), Peak discharge (Qp, mm/10 min), and runoff coefficient 

(RC). 
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Figure 11 Daily Evapotranspiration and areal average rainfall for the study catchments 
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