20 research outputs found

    Listeria pathogenesis and molecular virulence determinants

    Get PDF
    The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Polypoidal Choroidal Vasculopathy on Swept-Source Optical Coherence Tomography Angiography with Variable Interscan Time Analysis

    No full text
    Purpose: To use a novel optical coherence tomography angiography (OCTA) algorithm termed variable interscan time analysis (VISTA) to evaluate relative blood flow speeds in polypoidal choroidal vasculopathy (PCV). Methods: Prospective cross-sectional study enrolling patients with confirmed diagnosis of PCV. OCTA of the retina and choroid was obtained with a prototype swept-source OCT system. The acquired OCT volumes were centered on the branching vascular network (BVN) and polyps as determined by indocyanine-green angiography (ICGA). The relative blood flow speeds were characterized on VISTAOCTA. Results: Seven eyes from seven patients were evaluated. Swept-source OCTA enabled detailed enface visualization of the BVN and polyps in six eyes. VISTA-OCTA revealed variable blood flow speeds in different PCV lesion components of the same eye, with faster flow in the periphery of polyps and slower flow in the center of each polyp, as well as relatively slow flow in BVN when compared with retinal vessels. BVNs demonstrated relatively faster blood flow speeds in the larger trunk vessels and relatively slower speeds in the smaller vessels. Conclusions: Swept-source OCTA identifies polyps in most, but not all, PCV lesions. This limitation that may be related to relatively slow blood flow within the polyp, which may be below the OCTA’s sensitivity. VISTA-OCTA showed heterogeneous blood flow speeds within the polyps, which may indicate turbulent flow in the polyps. Translational Relevance: These results bring relevant insights into disease mechanisms that can account for the variable course of PCV, and can be relevant for diagnosis and management of patients with PCV. Keywords: OCTA; optical coherence tomography angiography; PCV; polypoidal choroidal vasculopathy; variable interscan time analysisNational Institutes of Health (U.S.) (Grant R01-EY011289-29A)National Institutes of Health (U.S.) (Grant R44- EY022864)National Institutes of Health (U.S.) (Grant R01-CA075289-16)Air Force Office of Scientific Research (Grant FA9550-15-1-0473)Air Force Office of Scientific Research (Grant FA9550-12-1-0499

    Quantifying Microvascular Changes Using OCT Angiography in Diabetic Eyes without Clinical Evidence of Retinopathy

    No full text
    Objective: To compare quantitative OCT angiography (OCTA) parameters of macular ischemia in diabetic eyes without retinopathy with those in healthy nondiabetic controls. Design: Cross-sectional study from August 2014 through June 2017. Subjects: Thirty-nine eyes of 39 diabetic patients without clinical evidence of diabetic retinopathy and 40 eyes of 40 healthy nondiabetic subjects. Methods: Subjects underwent OCTA imaging using prototype AngioVue software (RTVue XR Avanti). Analyses of the foveal avascular zone (FAZ) and vasculature surrounding the FAZ were performed on the automatically generated en face OCTA images of the superficial and deep retinal vasculatures using vessel-based and FAZ-based metrics. Main Outcome Measures: Comparison of measurements made in the superficial and deep retinal capillary plexuses of diabetic eyes and normal eyes. Results: FAZ-based analysis revealed statistically significant differences between diabetic and normal eyes in FAZ area (superficial and deep layers), perimeter (superficial layer), major axis length (superficial layer), and minor axis layer (superficial and deep layers). Vessel-based analysis revealed statistically significant differences in the binarized flow index (superficial and deep layers), both including and excluding the FAZ area. Conclusions: Quantitative OCTA parameters reveal subclinical macular ischemia at both the superficial and deep retinal capillary plexuses in diabetic eyes that do not manifest clinical retinopathy. Vessel-based and FAZ-based metrics applied to OCTA images may serve as effective tools for screening and disease monitoring in patients with diabetes without clinical evidence of retinopathy
    corecore