35 research outputs found

    Effect of Short Chain Branching on the Interlamellar Structure of Semicrystalline Polyethylene

    Get PDF
    We use molecular simulations with a united atom force field to examine the effect of short chain branching (SCB) on the noncrystalline, interlamellar structure typical of linear low density polyethylene (LLDPE). The model is predicated on a metastable thermodynamic equilibrium within the interlamellar space of the crystal stack and accounts explicitly for the various chain topologies (loops, tails, and bridges) therein. We examine three branched systems containing methyl, ethyl, and butyl side branches and compare our results to high density polyethylene (HDPE), without branches. We also compare results for two united atom force fields, PYS and TraPPE-UA, within the context of these simulations. In contrast to conventional wisdom, our simulations indicate that the thicknesses of the interfacial regions in systems with SCB are smaller than those observed for a linear polyethylene without branches and that branches are uniformly distributed throughout the interlamellar region. We find a prevalence of gauche states along the backbone due to the presence of branches and an abrupt decrease in the orientational order in the region immediately adjacent to the crystallite

    Field-to-farm gate greenhouse gas emissions from corn stover production in the Midwestern U.S.

    Get PDF
    Measured field data were used to compare two allocation methods on life cycle greenhouse gas emissions from corn (Zea mays L.) stover production in the Midwest U.S. We used publicly-available crop yield, nitrogen fertilizer, and direct soil nitrous oxide emissions data from the USDA-ARS Resilient Economic Agricultural Practices research program. Field data were aggregated from 9 locations across 26 site-years for 3 stover harvest rates (no removal; moderate removal e 3.1Mg ha-1; high removal e 7.2Mg ha-1) and 2 tillage practices (conventional; reduced/no-till). Net carbon uptake by crops was computed from measured plant carbon content. Monte Carlo simulations sampled input distributions to assess variability in farm-to-gate GHG emissions. The base analysis assumed no change in soil organic carbon stocks. In all cases, net CO2 uptake during crop growth and soil-respired CO2 dominated system emissions. Emissions were most sensitive to co-product accounting method, with system expansion emissions ~15% lower than mass allocation. Regardless of accounting method, lowest emissions occurred for a moderate removal rate under reduced/no-till management. The absence of correlations between N fertilization rate and stover removal rate or soil N2O emissions in this study challenges the use of such assumptions typically employed in life cycle assessments Storage of all carbon retained on the field as SOC could reduce emissions by an additional 15%. Our results highlight how variability in GHG emissions due to location and weather can overshadow the impact of farm management practices on field-to-farm gate emissions

    Oral health and elite sport performance

    Get PDF
    While the research base is limited, studies have consistently reported poor oral health in elite athletes since the first report from the 1968 Olympic Games. The finding is consistent both across selected samples attending dental clinics at major competitions and more representative sampling of teams and has led to calls from the International Olympic Committee for more accurate data on oral health. Poor oral health is an important issue directly as it can cause pain, negative effects on appearance and psychosocial effects on confidence and quality of life and may have long-term consequences for treatment burden. Self-reported evidence also suggests an impact on training and performance of athletes. There are many potential challenges to the oral health of athletes including nutritional, oral dehydration, exercise-induced immune suppression, lack of awareness, negative health behaviours and lack of prioritisation. However, in theory, oral diseases are preventable by simple interventions with good evidence of efficacy. The consensus statement aims to raise awareness of the issues of oral health in elite sport and recommends strategies for prevention and health promotion in addition to future research strategies

    Folding behavior of model proteins with weak energetic frustration

    Get PDF
    © 2004 American Institute of Physics. The electronic version of this article is the complete one and can be found at: http://dx.doi.org/10.1063/1.1751394DOI: 10.1063/1.1751394The native structure of fast-folding proteins, albeit a deep local free-energy minimum, may involve a relatively small energetic penalty due to nonoptimal, though favorable, contacts between amino acid residues. The weak energetic frustration that such contacts represent varies among different proteins and may account for folding behavior not seen in unfrustrated models. Minimalist model proteins with heterogeneous contacts—as represented by lattice heteropolymers consisting of three types of monomers—also give rise to weak energetic frustration in their corresponding native structures, and the present study of their equilibrium and nonequilibrium properties reveals some of the breadth in their behavior. In order to capture this range within a detailed study of only a few proteins, four candidate protein structures ~with their cognate sequences! have been selected according to a figure of merit called the winding index—a characteristic of the number of turns the protein winds about an axis. The temperature-dependent heat capacities reveal a high-temperature collapse transition, and an infrequently observed low-temperature rearrangement transition that arises because of the presence of weak energetic frustration. Simulation results motivate the definition of a new measure of folding affinity as a sequence-dependent free energy—a function of both a reduced stability gap and high accessibility to non-native structures—that correlates strongly with folding rates

    Minimalist models of proteins : misfolding and folding affinity

    No full text
    Ph.D.Rigoberto Hernande

    Plastic Deformation of Semicrystalline Polyethylene under Extension, Compression, and Shear Using Molecular Dynamics Simulation

    No full text
    Plastic deformation of the stack of alternating crystal and amorphous layers typical of semicrystalline polyethylene is studied by molecular dynamics simulation. A previous investigation of the semicrystalline layered stack undergoing isochoric extension1 is extended here to include several new modes of deformation: isostress extension, isostress compression, and isochoric shear, at 350 K and deformation rates of 5 × 107 and 5 × 106 s–1. The observed stress–strain responses are interpreted in terms of the underlying structural evolution of the material for each mode of deformation. Under tensile deformation, crystallographic slip was observed at low strains (0 0.26), melting and recrystallization were observed at the slower deformation rate, while surface melting and cavitation were observed at the faster deformation rate. Under compressive deformation at the slower deformation rate, crystallographic slip was again observed at low strains. For the faster compressive deformation, an initial period of rapid stress growth at low strain was observed. This initial stress growth then transitions to a process of fine crystallographic slip at a strain of e3 = −0.005. At intermediate strains under compressive deformation, the release of bridging entanglements is observed for both strain rates. However, no melting or recrystallization phenomena were observed under compression, even at the highest strains simulated (e3 = −0.33). Under shear deformation, interlamellar slip was observed for both zx and zy shear (strain gradient parallel to stacking direction). Chain segments tend to stretch and align in the shear direction. Interestingly, under shear deformation this semicrystalline polyethylene exhibits transient behavior typical of non-Newtonian fluids.Exxon Mobil Corporatio

    Binding of Drug-Activated CAR/Nr1i3 Alters Metabolic Regulation in the Liver

    No full text
    Summary: The constitutive androstane receptor (CAR/Nr1i3) regulates detoxification of drugs and other xenobiotics by the liver. Binding of these compounds, activating ligands, causes CAR to translocate to the nucleus and stimulate genes of detoxification. However, CAR activation also changes metabolism and induces rapid liver growth. To explain this gene regulation, we characterized the genome-wide early binding of CAR; its binding partner, RXRα; and the acetylation that they induced on H4K5. CAR-linked genes showed either stimulation or inhibition and regulated lipid, carbohydrate, and energy metabolism, as well as detoxification. Stimulation of expression increased, but inhibition did not decrease, H4K5Ac. Transcriptional inhibition occurred when CAR bound with HNF4α, PPARα, or FXR on the same enhancers. Functional competition among these bound nuclear receptors normally coordinates transcriptional resources as metabolism shifts. However, binding of drug-activated CAR to the same enhancers adds a new competitor that constitutively alters the normal balance of metabolic gene regulation. : Molecular Mechanism of Gene Regulation; Genomics; Transcriptomics Subject Areas: Molecular Mechanism of Gene Regulation, Genomics, Transcriptomic

    Molecular Dynamics Simulation of Homogeneous Crystal Nucleation in Polyethylene

    No full text
    Using a realistic united-atom force field, molecular dynamics simulations were performed to study homogeneous nucleation of the crystal phase at about 30% supercooling from the melts of n-pentacontahectane (C150) and a linear polyethylene (C1000), both of which are long enough to exhibit the chain folding that is characteristic of polymer crystallization. The nucleation rate was calculated and the critical nuclei were identified using a mean first-passage time analysis. The nucleation rate was found to be insensitive to the chain length in this range of molecular weight. The critical nucleus contains about 150 carbons on average and is significantly smaller than the radius of gyration of the chains, at this supercooling. A cylinder model was used to characterize the shape of the crystal nuclei and to calculate the interfacial free energies. A chain segment analysis was performed to characterize the topology of the crystal surface in terms of loops (including folds) and tails. The length distribution of loops is broad, supporting the “switchboard model” for the early stage crystals formed at deep supercooling. Using the survival probability method, the critical nucleus size was determined as a function of temperature. The interfacial free energies were found to be temperature-dependent. The free energy barrier and nucleation rate as functions of temperature were also calculated and compare favorably with experiments.Exxon Mobil Corporatio

    Heterogeneous Nucleation of an n-Alkane on Tetrahedrally Coordinated Crystals

    No full text
    Heterogeneous nucleation refers to the propensity for phase transformations to initiate preferentially on foreign surfaces, such as vessel walls, dust particles, or formulation additives. In crystallization, the form of the initial nucleus has ramifications for the crystallographic form, morphology, and properties of the resulting solid. Nevertheless, the discovery and design of nucleating agents remains a matter of trial and error because of the very small spatiotemporal scales over which the critical nucleus is formed and the extreme difficulty of examining such events empirically. Using molecular dynamics simulations, we demonstrate a method for the rapid screening of entire families of materials for activity as nucleating agents and for characterizing their mechanism of action. The method is applied to the crystallization of n-pentacontane, a model surrogate for polyethylene, on the family of tetrahedrally coordinated crystals, including diamond and silicon. A systematic variation of parameters in the interaction potential permits a comprehensive, physically based screening of nucleating agents in this class of materials, including both real and hypothetical candidates. The induction time for heterogeneous nucleation is shown to depend strongly on crystallographic registry between the nucleating agent and the critical nucleus, indicative of an epitaxial mechanism in this class of materials. Importantly, the severity of this registry requirement weakens with decreasing rigidity of the substrate and increasing strength of attraction to the surface of the nucleating agent. Employing this method, a high-throughput computational screening of nucleating agents becomes possible, facilitating the discovery of novel nucleating agents within a broad “materials genome” of possible additives.National Science Foundation (U.S.) (Award CMMI-1235109
    corecore