3 research outputs found

    Metabarcoding mosquitoes: MinION sequencing of bulk samples gives accurate species profiles for vector surveillance (Culicidae)

    Get PDF
    Mosquitoes (Family: Culicidae) are dominant vectors of pathogens, and their surveillance has been incorporated into major disease control programs worldwide. However, routine, species-level identification of mosquitoes is often a bottleneck for management, and Next Generation Sequencing (NGS) platforms and DNA metabarcoding can revolutionize this process. MinION nanopore technologies promise on-site sequencing and rapid sample processing rates ideal for time-sensitive biosurveillance. Here, we benchmark the results of DNA metabarcoding on the MinION against the Illumina MiSeq platform, which is known for its higher sequencing accuracy. We used metazoan COI mini-barcode primers to carry out DNA metabarcoding of mosquito bulk samples caught during a real vector survey, then compared the mosquito species profiles recovered on each sequencing platform. We also tested the influence of using different trap lures, storage methods, and pooling different specimen body parts on the number of species recovered. We report that mosquito species-level identifications were highly congruent between MinION and Illumina (93% overlap). We also find that CO2 gas cylinders outperformed biogenic CO2 sources significantly, by two-fold. Notably, we demonstrated the feasibility of detecting zoonotic reservoirs and pathogen signals from mosquito bulk samples. We present the first use of DNA metabarcoding on the MinION for vector surveillance and discuss future applications

    THE NEXT GENERATION OF FRESHWATER BIOASSESSMENT: ENVIRONMENTAL DNA

    No full text
    Master'sMASTER OF SCIENC

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore