16 research outputs found

    USDA Forest Service Forest Products Laboratory: Acetylation of Wood 1945–1966

    No full text
    The first research on acetylation of wood started in 1928, and the first research done on acetylation of wood at the USDA Forest Service Forest Products Laboratory (FPL) started in 1945. This is a review of the research done between 1945 and 1966 at the FPL. This research was the first to show that acetylated wood was both decay-resistant and dimensionally stable. It was the pioneering research that ultimately led to the commercial production of acetylated wood

    Moisture sorption, biological durability, and mechanical performance of WPC containing modified wood and polylactates

    No full text
    Biological durability is an important feature for wood-plastic composites (WPC) intended for outdoor applications. One route to achieving WPC products with increased biological durability is to use wood preservative agents in the formulation of the WPC. Another option could be to use a chemically modified wood component that already exhibits increased resistance to biological degradation. There is also a need to use biobased thermoplastics made from renewable resources, which would decrease the dependency on petrochemically-produced thermoplastics in the future. The objective of this study was to examine moisture sorption properties, biological durability, and mechanical performance of injection-molded WPC samples based on acetylated or thermally modified wood components and a polylactate matrix. The biological durability was evaluated in a terrestrial microcosm (TMC) test according to ENV 807, followed by mechanical evaluation in a center point bending test. The moisture sorption properties were investigated via both water soaking and exposure in a high-humidity climate. Low or negligible mass losses were observed in the TMC test for all WPC samples. However, the mechanical evaluation after exposure in the TMC test showed 35-40% losses in both strength and stiffness for the WPC containing an unmodified wood component

    Nanostructural Changes Correlated to Decay Resistance of Chemically Modified Wood Fibers

    No full text
    Reactive chemical modifications have been shown to impart decay resistance to wood. These modifications change hydroxyl availability, water uptake, surface energy, and the nanostructure of wood. Because fungal action occurs on the micro and nano scale, further investigation into the nanostructure may lead to better strategies to prevent fungal decay. The aim of this article is to introduce our findings using small angle neutron scattering (SANS) to probe the effects of chemical modifications on the nanostructure of wood fibers. Southern pine wood fiber samples were chemically modified to various weight percentage gains (WPG) using propylene oxide (PO), butylene oxide (BO), or acetic anhydride (AA). After modification, the samples were water leached for two weeks to remove any unreacted reagents, homopolymers or by-products and then the equilibrium moisture content (EMC) was determined. Laboratory soil-block-decay evaluations against the brown rot fungus Gloeophyllum trabeum were performed to determine weight loss and decay resistance of the modifications. To assist in understanding the mechanism behind fungal decay resistance, SANS was used to study samples that were fully immersed in deuterium oxide (D2O). These measurements revealed that modifying the fibers led to differences in the swollen wood nanostructure compared to unmodified wood fibers. Moreover, the modifications led to differences in the nanoscale features observed in samples that were exposed to brown rot fungal attack compared to unmodified wood fibers and solid wood blocks modified with alkylene oxides

    Nanostructural Changes Correlated to Decay Resistance of Chemically Modified Wood Fibers

    No full text
    Reactive chemical modifications have been shown to impart decay resistance to wood. These modifications change hydroxyl availability, water uptake, surface energy, and the nanostructure of wood. Because fungal action occurs on the micro and nano scale, further investigation into the nanostructure may lead to better strategies to prevent fungal decay. The aim of this article is to introduce our findings using small angle neutron scattering (SANS) to probe the effects of chemical modifications on the nanostructure of wood fibers. Southern pine wood fiber samples were chemically modified to various weight percentage gains (WPG) using propylene oxide (PO), butylene oxide (BO), or acetic anhydride (AA). After modification, the samples were water leached for two weeks to remove any unreacted reagents, homopolymers or by-products and then the equilibrium moisture content (EMC) was determined. Laboratory soil-block-decay evaluations against the brown rot fungus Gloeophyllum trabeum were performed to determine weight loss and decay resistance of the modifications. To assist in understanding the mechanism behind fungal decay resistance, SANS was used to study samples that were fully immersed in deuterium oxide (D2O). These measurements revealed that modifying the fibers led to differences in the swollen wood nanostructure compared to unmodified wood fibers. Moreover, the modifications led to differences in the nanoscale features observed in samples that were exposed to brown rot fungal attack compared to unmodified wood fibers and solid wood blocks modified with alkylene oxides

    Adhesives for Achieving Durable Bonds with Acetylated Wood

    No full text
    Acetylation of wood imparts moisture durability, decay resistance, and dimensional stability to wood; however, making durable adhesive bonds with acetylated wood can be more difficult than with unmodified wood. The usual explanation is that the acetylated surface has fewer hydroxyl groups, resulting in a harder-to-wet surface and in fewer hydrogen bonds between wood and adhesive. This concept was evaluated using four different adhesives (resorcinol–formaldehyde, emulsion polymer isocyanate, epoxy, and melamine–formaldehyde) with unmodified wood, acetylated wood, and acetylated wood that had been planed. Strikingly, acetylation did not hinder adhesive bonds with a waterborne resorcinol–formaldehyde adhesive that bonded equally well to both unmodified and acetylated yellow poplar. An epoxy adhesive bonded better to the acetylated wood than to the unmodified wood, in contrast to an emulsion polymer isocyanate, which gave less durable bonds to acetylated than to unmodified wood. Planing of the acetylated wood surface prior to bonding reduced bond durability for the epoxy adhesive and increased the amount of surface hydroxyl groups, as measured using X-ray photoelectron spectroscopic analysis of the trifluoroacetic anhydride-treated wood. These experiments showed that wood modification is useful in understanding wood-adhesive interactions, in addition to determining how to develop adhesives for acetylated woods

    Comparative Adhesive Bonding of Wood Chemically Modified with Either Acetic Anhydride or Butylene Oxide

    No full text
    Determining adhesive bond performance for chemically modified wood is important not only for its commercial utility but also for understanding wood bond durability. Bulking modifications occupy space inside the cell wall, limiting the space available for water. We used two bulking modifications on yellow poplar (Liriodendron tulipifera L.): acetylation (Ac), which bulks and converts a wood hydroxyl group to an ester, while butylene oxide (BO) also bulks the wood but preserves a hydroxyl group. Both result in lower water uptake; however, the loss of the hydroxyl group with Ac reduces the wood’s ability to form hydrogen and other polar bonds with the adhesives. On the other hand, the BO reaction replaces a hydroxyl group with another one along a hydrocarbon chain; thus, this product may not be harder to bond than the unmodified wood. We investigated how these chemical modifications of wood affect bond performance with four adhesives: resorcinol-formaldehyde (RF), melamine-formaldehyde (MF), emulsion polymer isocyanate (EPI), and epoxy. The ASTM D 905 bond shear strength for both dry and wet samples showed that the BO results were quite similar to the unmodified wood, but the MF and EPI performed poorly on Ac-modified wood, in contrast to the results with RF and epoxy

    Degradation Behavior and Accelerated Weathering of Composite Boards Produced from Waste Tetra Pak® Packaging Materials

    No full text
    Manufacturing panels from Tetra Pak® (TP) packaging material might be an alternative to conventional wood-based panels. This study evaluated some chemical and physical properties as well as biological, weathering, and fire performance of panels with and without zinc borate (ZnB) by using shredded TP packaging cartons. Such packaging material, a worldwide well-known multilayer beverage packaging system, is composed of cellulose, low-density polyethylene (LDPE), and aluminum (Al). Panels produced from waste TP packaging material were also examined by FT-IR to understand the fungal deterioration and extent of degradation after accelerated weathering. Before FT-IR investigations, panel specimens were ground under nitrogen atmosphere due to non-uniformity of the composite material. The FT-IR results showed that fungal degradation occurred in the natural polymer of the panel matrix. Although the natural polymer is mostly composed of cellulose, there were also small amounts of polyoses and lignin. It was seen that especially polyose and lignin bands in FT-IR spectra were affected more than cellulose bands by fungal attack. No changes were observed by the fungi in the plastic component (LDPE) of the matrix; however, LDPE seemed more sensitive to weathering than cellulose. Incorporation of ZnB at loading level of 1% (w/w) did not contribute fire performance of the panels when compared to control panel specimens, while a loading level of 10% improved fire performance considering test parameters such as mass loss, ignition time and peak heat release rate

    Chemical Modification of Kraft Lignin: Effect on Chemical and Thermal Properties

    No full text
    Esterified kraft lignins (KL) were prepared by reaction with maleic anhydride (MA), succinic anhydride (SA), and phthalic anhydride (PA) in acetone solutions. The esterified lignins were characterized using ATR-FTIR, solid state CP-MAS 13C NMR spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). PA modification resulted in the highest weight gain percent (WGP) when compared to MA and SA modifications. Spectroscopic analysis revealed decreases in hydroxyl content and increases in carbonyl (C=O) and ester groups of the modified KL as a result of esterification. The hydrophobic properties of the modified lignin increased. The MA- and SA-modified KL showed an increased thermal stability compared to unmodified KL. PA-modified lignin presented distinct thermal decomposition stages, which showed rapid degradation at lower temperature. The results of this study indicate that it is possible to change the basic properties of kraft lignin by anhydride modification to facilitate the production of high performance composites
    corecore