1,038 research outputs found

    Assessing the impact of draught load pulling on welfare in equids

    Get PDF
    About 112 million working equids are the source of income for 600 million people globally. Many equids are used for pulling loads (up to 15,000 kg per day) to transport goods. Most of them are associated with brick kilns, mining, and agriculture industries in developing countries. They may suffer from welfare issues such as overloading, being beaten, and being forced to work for long periods. These issues may occur due to a poor understanding of load-pulling equids. Understanding their capabilities and the elements that influence them is critical for efficient performance and welfare. The measurement of stride characteristics and gait kinematics can reveal loading adaptations and help identify loading limitations. It is known that both loading and fatigue change the locomotor patterns of load-pulling horses. Heart rate is a stress quantifying metric and an important representative of the speed of work and draught force. Heart rate variability is a regularly used statistic to quantify a physiological response to stresses, but it has never been used for load-pulling equids. Changes in blood lactate, nitrogen, oxygen, and carbon dioxide contents are reliable biochemical indicators of the effects of load pulling. Changes in plasma cortisol levels reflect the intensity of exercise and stress levels in horses while pulling a load. However, eye blink rate is a cheap, simple, and immediate indicator of acute equine stress, and we suggest it may be used to aid in load-pulling equine welfare assessment. However, further research is needed for a standardized and evidence-based draught load pulling capacity of working horses, mules, and donkeys

    Searching for Signatures of Cosmic Superstrings in the CMB

    Full text link
    Because cosmic superstrings generically form junctions and gauge theoretic strings typically do not, junctions may provide a signature to distinguish between cosmic superstrings and gauge theoretic cosmic strings. In cosmic microwave background anisotropy maps, cosmic strings lead to distinctive line discontinuities. String junctions lead to junctions in these line discontinuities. In turn, edge detection algorithms such as the Canny algorithm can be used to search for signatures of strings in anisotropy maps. We apply the Canny algorithm to simulated maps which contain the effects of cosmic strings with and without string junctions. The Canny algorithm produces edge maps. To distinguish between edge maps from string simulations with and without junctions, we examine the density distribution of edges and pixels crossed by edges. We find that in string simulations without Gaussian noise (such as produced by the dominant inflationary fluctuations) our analysis of the output data from the Canny algorithm can clearly distinguish between simulations with and without string junctions. In the presence of Gaussian noise at the level expected from the current bounds on the contribution of cosmic strings to the total power spectrum of density fluctuations, the distinction between models with and without junctions is more difficult. However, by carefully analyzing the data the models can still be differentiated.Comment: 15 page

    Making sense of illness: the experiences of users of complementary medicine

    Get PDF
    The present study investigated the experiences of users of complementary and alternative medicine (CAM) using a qualitative approach. In-depth interviews were conducted with 11 frequent users and analysed using interpretative phenomenological analysis (IPA). Results indicated that the patient-practitioner relationship and explanatory frameworks provided by CAM were perceived as important components of the therapeutic process, irrespective of treatment efficacy. CAM served a variety of functions beyond the explicit relief of symptoms by increasing energy and relaxation, facilitating coping and enhancing self/other awareness. It is therefore important that these wider effects are taken into account when evaluating complementary medicine in order to accurately reflect patients' experiences

    The influence of collective neutrino oscillations on a supernova r-process

    Full text link
    Recently, it has been demonstrated that neutrinos in a supernova oscillate collectively. This process occurs much deeper than the conventional matter-induced MSW effect and hence may have an impact on nucleosynthesis. In this paper we explore the effects of collective neutrino oscillations on the r-process, using representative late-time neutrino spectra and outflow models. We find that accurate modeling of the collective oscillations is essential for this analysis. As an illustration, the often-used "single-angle" approximation makes grossly inaccurate predictions for the yields in our setup. With the proper multiangle treatment, the effect of the oscillations is found to be less dramatic, but still significant. Since the oscillation patterns are sensitive to the details of the emitted fluxes and the sign of the neutrino mass hierarchy, so are the r-process yields. The magnitude of the effect also depends sensitively on the astrophysical conditions - in particular on the interplay between the time when nuclei begin to exist in significant numbers and the time when the collective oscillation begins. A more definitive understanding of the astrophysical conditions, and accurate modeling of the collective oscillations for those conditions, is necessary.Comment: 27 pages, 10 figure

    The 21 cm Signature of Cosmic String Wakes

    Full text link
    We discuss the signature of a cosmic string wake in 21cm redshift surveys. Since 21cm surveys probe higher redshifts than optical large-scale structure surveys, the signatures of cosmic strings are more manifest in 21cm maps than they are in optical galaxy surveys. We find that, provided the tension of the cosmic string exceeds a critical value (which depends on both the redshift when the string wake is created and the redshift of observation), a cosmic string wake will generate an emission signal with a brightness temperature which approaches a limiting value which at a redshift of z+1=30z + 1 = 30 is close to 400 mK in the limit of large string tension. The signal will have a specific signature in position space: the excess 21cm radiation will be confined to a wedge-shaped region whose tip corresponds to the position of the string, whose planar dimensions are set by the planar dimensions of the string wake, and whose thickness (in redshift direction) depends on the string tension. For wakes created at zi+1=103z_i + 1 = 10^3, then at a redshift of z+1=30z + 1 = 30 the critical value of the string tension μ\mu is Gμ=6×107G \mu = 6 \times 10^{-7}, and it decreases linearly with redshift (for wakes created at the time of equal matter and radiation, the critical value is a factor of two lower at the same redshift). For smaller tensions, cosmic strings lead to an observable absorption signal with the same wedge geometry.Comment: 11 pages, 4 figures; a couple of comments added in the discussion sectio

    Meta-analysis of transcriptome data identifies a novel 5-gene pancreatic adenocarcinoma classifier

    Get PDF
    Purpose: Pancreatic ductal adenocarcinoma (PDAC) is largely incurable due to late diagnosis. Superior early detection biomarkers are critical to improving PDAC survival and risk stratification. Experimental Design: Optimized meta-analysis of PDAC transcriptome datasets identified and validated key PDAC biomarkers. PDAC-specific expression of a 5-gene biomarker panel was measured by qRT-PCR in microdissected patient-derived FFPE tissues. Cell-based assays assessed impact of two of these biomarkers, TMPRSS4 and ECT2, on PDAC cells. Results: A 5-gene PDAC classifier (TMPRSS4, AHNAK2, POSTN, ECT2, SERPINB5) achieved on average 95% sensitivity and 89% specificity in discriminating PDAC from non-tumor samples in four training sets and similar performance (sensitivity = 94%, specificity = 89.6%) in five independent validation datasets. This classifier accurately discriminated PDAC from chronic pancreatitis (AUC = 0.83), other cancers (AUC = 0.89), and non-tumor from PDAC precursors (AUC = 0.92) in three independent datasets. Importantly, the classifier distinguished PanIN from healthy pancreas in the PDX1-Cre;LSL-KrasG12D PDAC mouse model. Discriminatory expression of the PDAC classifier genes was confirmed in microdissected FFPE samples of PDAC and matched surrounding non-tumor pancreas or pancreatitis. Notably, knock-down of TMPRSS4 and ECT2 reduced PDAC soft agar growth and cell viability and TMPRSS4 knockdown also blocked PDAC migration and invasion. Conclusions: This study identified and validated a highly accurate 5-gene PDAC classifier for discriminating PDAC and early precursor lesions from non-malignant tissue that may facilitate early diagnosis and risk stratification upon validation in prospective clinical trials. Cell-based experiments of two overexpressed proteins encoded by the panel, TMPRSS4 and ECT2, suggest a causal link to PDAC development and progression, confirming them as potential therapeutic targets

    Mid-term changes in cognitive functions in patients with atrial fibrillation: a longitudinal analysis of the Swiss-AF cohort

    Get PDF
    Background: Longitudinal association studies of atrial fibrillation (AF) and cognitive functions have shown an unclear role of AF-type and often differ in methodological aspects. We therefore aim to investigate longitudinal changes in cognitive functions in association with AF-type (non-paroxysmal vs. paroxysmal) and comorbidities in the Swiss-AF cohort. Methods: Seven cognitive measures were administered up to five times between 2014 and 2022. Age-education standardized scores were calculated and association between longitudinal change in scores and baseline AF-type investigated using linear mixed-effects models. Associations between AF-type and time to cognitive drop, an observed score of at least one standard deviation below individual's age-education standardized cognitive scores at baseline, were studied using Cox proportional hazard models of each cognitive test, censoring patients at their last measurement. Models were adjusted for baseline covariates.Results2,415 AF patients (mean age 73.2 years; 1,080 paroxysmal, 1,335 non-paroxysmal AF) participated in this Swiss multicenter prospective cohort study. Mean cognitive scores increased longitudinally (median follow-up 3.97 years). Non-paroxysmal AF patients showed smaller longitudinal increases in Digit Symbol Substitution Test (DSST), Cognitive Construct Score (CoCo)and Trail Making Test part B (TMT-B) scores vs. paroxysmal AF patients. Diabetes, history of stroke/TIA and depression were associated with worse performance on all cognitive tests. No differences in time to cognitive drop were observed between AF-types in any cognitive test. Conclusion: This study indicated preserved cognitive functioning in AF patients, best explained by practice effects. Smaller practice effects were found in non-paroxysmal AF patients in the DSST, TMT-B and the CoCo and could indicate a marker of subtle cognitive decline. As diabetes, history of stroke/TIA and depression—but not AF-type—were associated with cognitive drop, more attention should be given to risk factors and underlying mechanisms of AF

    Mid-term changes in cognitive functions in patients with atrial fibrillation: a longitudinal analysis of the Swiss-AF cohort.

    Get PDF
    BACKGROUND Longitudinal association studies of atrial fibrillation (AF) and cognitive functions have shown an unclear role of AF-type and often differ in methodological aspects. We therefore aim to investigate longitudinal changes in cognitive functions in association with AF-type (non-paroxysmal vs. paroxysmal) and comorbidities in the Swiss-AF cohort. METHODS Seven cognitive measures were administered up to five times between 2014 and 2022. Age-education standardized scores were calculated and association between longitudinal change in scores and baseline AF-type investigated using linear mixed-effects models. Associations between AF-type and time to cognitive drop, an observed score of at least one standard deviation below individual's age-education standardized cognitive scores at baseline, were studied using Cox proportional hazard models of each cognitive test, censoring patients at their last measurement. Models were adjusted for baseline covariates. RESULTS 2,415 AF patients (mean age 73.2 years; 1,080 paroxysmal, 1,335 non-paroxysmal AF) participated in this Swiss multicenter prospective cohort study. Mean cognitive scores increased longitudinally (median follow-up 3.97 years). Non-paroxysmal AF patients showed smaller longitudinal increases in Digit Symbol Substitution Test (DSST), Cognitive Construct Score (CoCo)and Trail Making Test part B (TMT-B) scores vs. paroxysmal AF patients. Diabetes, history of stroke/TIA and depression were associated with worse performance on all cognitive tests. No differences in time to cognitive drop were observed between AF-types in any cognitive test. CONCLUSION This study indicated preserved cognitive functioning in AF patients, best explained by practice effects. Smaller practice effects were found in non-paroxysmal AF patients in the DSST, TMT-B and the CoCo and could indicate a marker of subtle cognitive decline. As diabetes, history of stroke/TIA and depression-but not AF-type-were associated with cognitive drop, more attention should be given to risk factors and underlying mechanisms of AF

    Canny Algorithm, Cosmic Strings and the Cosmic Microwave Background

    Full text link
    We describe a new code to search for signatures of cosmic strings in cosmic microwave anisotropy maps. The code implements the Canny Algorithm, an edge detection algorithm designed to search for the lines of large gradients in maps. Such a gradient signature which is coherent in position space is produced by cosmic strings via the Kaiser-Stebbins effect. We test the power of our new code to set limits on the tension of the cosmic strings by analyzing simulated data with and without cosmic strings. We compare maps with a pure Gaussian scale-invariant power spectrum with maps which have a contribution of a distribution of cosmic strings obeying a scaling solution. The maps have angular scale and angular resolution comparable to what current and future ground-based small-scale cosmic microwave anisotropy experiments will achieve. We present tests of the codes, indicate the limits on the string tension which could be set with the current code, and describe various ways to refine the analysis. Our results indicate that when applied to the data of ongoing cosmic microwave experiments such as the South Pole Telescope project, the sensitivity of our method to the presence of cosmic strings will be more than an order of magnitude better than the limits from existing analyses.Comment: 19 pp, 14 figures; v4. minor corrections, as appears in journa
    corecore