518 research outputs found

    Night Rush

    Get PDF

    J.M. Barrie and the Du Mauriers

    Get PDF
    Notes the influence of several members of the Du Maurier family on the writings of J.M. Barrie—particularly on Peter Pan

    “I can’t learn when I’m hungry”: Responding to U.S. college student basic needs insecurity in pedagogy and praxis

    Get PDF
    Food insecurity and other basic needs insecurities were pressing concerns for U.S. college students prior to the COVID-19 crisis and are even more so now. These issues disproportionately impact minoritized students, making addressing basic needs an issue of educational equity. As feminist teacher-scholars, we reflect in this essay on what it means to teach in the context of student basic needs insecurities, drawing on our experiences from launching an interdisciplinary initiative dedicated to combatting food insecurity on our campus. In doing so, we seek to catalyze changes within and beyond the classroom to better support students

    Frequency-based nanoparticle sensing over large field ranges using the ferromagnetic resonances of a magnetic nanodisc

    Full text link
    Using finite element micromagnetic simulations, we study how resonant magnetisation dynamics in thin magnetic discs with perpendicular anisotropy are influenced by magnetostatic coupling to a magnetic nanoparticle. We identify resonant modes within the disc using direct magnetic eigenmode calculations and study how their frequencies and profiles are changed by the nanoparticle's stray magnetic field. We demonstrate that particles can generate shifts in the resonant frequency of the disc's fundamental mode which exceed resonance linewidths in recently studied spin torque oscillator devices. Importantly, it is shown that the simulated shifts can be maintained over large field ranges (here up to 1T). This is because the resonant dynamics (the basis of nanoparticle detection here) respond directly to the nanoparticle stray field, i.e. detection does not rely on nanoparticle-induced changes to the magnetic ground state of the disk. A consequence of this is that in the case of small disc-particle separations, sensitivities to the particle are highly mode- and particle-position-dependent, with frequency shifts being maximised when the intense stray field localised directly beneath the particle can act on a large proportion of the disc's spins that are undergoing high amplitude precession.Comment: 9 pages, 9 figures. Updated version from 31.7.2016 includes minor changes in introduction and sections III.C and III.D (additional information linking the results to real-world bio-sensing devices

    Discovery of the largest historic silicic submarine eruption

    Get PDF
    It was likely twice the size of the renowned Mount St. Helens eruption of 1980 and perhaps more than 10 times bigger than the more recent 2010 Eyjafjallajökull eruption in Iceland. However, unlike those two events, which dominated world news headlines, in 2012 the daylong submarine silicic eruption at Havre volcano in the Kermadec Arc, New Zealand (Figure 1a; ~800 kilometers north of Auckland, New Zealand), passed without fanfare. In fact, for a while no one even knew it had occurred

    Hysteresis of nanocylinders with Dzyaloshinskii-Moriya interaction

    Full text link
    The potential for application of magnetic skyrmions in high density storage devices provides a strong drive to investigate and exploit their stability and manipulability. Through a three-dimensional micromagnetic hysteresis study, we investigate the question of existence of skyrmions in cylindrical nanostructures of variable thickness. We quantify the applied field and thickness dependence of skyrmion states, and show that these states can be accessed through relevant practical hysteresis loop measurement protocols. As skyrmionic states have yet to be observed experimentally in confined helimagnetic geometries, our work opens prospects for developing viable hysteresis process-based methodologies to access and observe skyrmionic states.Comment: 4 pages, 2 figure

    Thermal stability and topological protection of skyrmions in nanotracks

    Full text link
    Magnetic skyrmions are hailed as a potential technology for data storage and other data processing devices. However, their stability against thermal fluctuations is an open question that must be answered before skyrmion-based devices can be designed. In this work, we study paths in the energy landscape via which the transition between the skyrmion and the uniform state can occur in interfacial Dzyaloshinskii-Moriya finite-sized systems. We find three mechanisms the system can take in the process of skyrmion nucleation or destruction and identify that the transition facilitated by the boundary has a significantly lower energy barrier than the other energy paths. This clearly demonstrates the lack of the skyrmion topological protection in finite-sized magnetic systems. Overall, the energy barriers of the system under investigation are too small for storage applications at room temperature, but research into device materials, geometry and design may be able to address this
    • …
    corecore