25 research outputs found

    Evaluation of CSF and plasma biomarkers of brain melanocortin activity in response to caloric restriction in humans

    Get PDF
    The melanocortin neuronal system, which consists of hypothalamic proopiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, is a leptin target that regulates energy balance and metabolism, but studies in humans are limited by a lack of reliable biomarkers to assess brain melanocortin activity. The objective of this study was to measure the POMC prohormone and its processed peptide, β-endorphin (β-EP), in cerebrospinal fluid (CSF) and AgRP in CSF and plasma after calorie restriction to validate their utility as biomarkers of brain melanocortin activity. CSF and plasma were obtained from 10 lean and obese subjects after fasting (40 h) and refeeding (24 h), and from 8 obese subjects before and after 6 wk of dieting (800 kcal/day) to assess changes in neuropeptide and hormone levels. After fasting, plasma leptin decreased to 35%, and AgRP increased to 153% of baseline. During refeeding, AgRP declined as leptin increased; CSF β-EP increased, but POMC did not change. Relative changes in plasma and CSF leptin were blunted in obese subjects. After dieting, plasma and CSF leptin decreased to 46% and 70% of baseline, CSF POMC and β-EP decreased, and plasma AgRP increased. At baseline, AgRP correlated negatively with insulin and homeostasis model assessment (HOMA-IR), and positively with the Matsuda index. Thus, following chronic calorie restriction, POMC and β-EP declined in CSF, whereas acutely, only β-EP changed. Plasma AgRP, however, increased after both acute and chronic calorie restriction. These results support the use of CSF POMC and plasma AgRP as biomarkers of hypothalamic melanocortin activity and provide evidence linking AgRP to insulin sensitivity

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    EXTENDING BODY CONDITION SCORING BEYOND MEASUREABLE RUMP FAT TO ESTIMATE FULL RANGE OF NUTRITIONAL CONDITION FOR MOOSE

    No full text
    Moose (Alces alces) populations along the southern extent of their range are largely declining, and there is growing evidence that nutritional condition — which influences several vital rates – is a contributing factor. Moose body condition can presently be estimated only when there is measurable subcutaneous rump fat, which equates to animals with >6% ingesta-free body fat (IFBFat). There is need for a technique to allow body fat estimation of animals in poorer body condition (i.e., <6% body fat). We advance current methods for moose, following those used and validated with other ungulate species, by establishing a moose-specific body condition score (BCS) that can be used to estimate IFBFat in the lower range of condition. Our modified BCS was related strongly (r2 = 0.89) to IFBFat estimates based on measurable rump fat. By extending the predicted relationship to individuals without measurable fat, the BCS equated severe emaciation with 0.67% IFBFat, supporting the accuracy of the method. The lower end of nutritional condition is important for identifying relationships involving life-history characteristics because most state-dependent changes occur at lower levels of condition. Therefore, until the BCS can be validated with moose carcasses, we believe our method to estimate body fat across the full range of condition should yield better understanding of the drivers underlying declining moose populations

    Evaluation of CSF and plasma biomarkers of brain melanocortin activity in response to caloric restriction in humans

    No full text
    The melanocortin neuronal system, which consists of hypothalamic proopiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, is a leptin target that regulates energy balance and metabolism, but studies in humans are limited by a lack of reliable biomarkers to assess brain melanocortin activity. The objective of this study was to measure the POMC prohormone and its processed peptide, β-endorphin (β-EP), in cerebrospinal fluid (CSF) and AgRP in CSF and plasma after calorie restriction to validate their utility as biomarkers of brain melanocortin activity. CSF and plasma were obtained from 10 lean and obese subjects after fasting (40 h) and refeeding (24 h), and from 8 obese subjects before and after 6 wk of dieting (800 kcal/day) to assess changes in neuropeptide and hormone levels. After fasting, plasma leptin decreased to 35%, and AgRP increased to 153% of baseline. During refeeding, AgRP declined as leptin increased; CSF β-EP increased, but POMC did not change. Relative changes in plasma and CSF leptin were blunted in obese subjects. After dieting, plasma and CSF leptin decreased to 46% and 70% of baseline, CSF POMC and β-EP decreased, and plasma AgRP increased. At baseline, AgRP correlated negatively with insulin and homeostasis model assessment (HOMA-IR), and positively with the Matsuda index. Thus, following chronic calorie restriction, POMC and β-EP declined in CSF, whereas acutely, only β-EP changed. Plasma AgRP, however, increased after both acute and chronic calorie restriction. These results support the use of CSF POMC and plasma AgRP as biomarkers of hypothalamic melanocortin activity and provide evidence linking AgRP to insulin sensitivity

    Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives

    No full text
    Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research. Topographically complex regions today feature high taxonomic and ecological diversity. Ancient topographic diversity gradients arose and declined over millions of years. Paleontological and modern data are crucial to understand topographic diversity gradients. Topographically complex regions have high conservation valu

    Noninvasive molecular imaging reveals role of PAF in leukocyte-endothelial interaction in LPS-induced ocular vascular injury

    No full text
    Uveitis is a systemic immune disease and a common cause of blindness. The eye is an ideal organ for light-based imaging of molecular events underlying vascular and immune diseases. The phospholipid platelet-activating factor (PAF) is an important mediator of inflammation, the action of which in endothelial and immune cells in vivo is not well understood. The purpose of this study was to investigate the role of PAF in endothelial injury in uveitis. Here, we use our recently introduced in vivo molecular imaging approach in combination with the PAF inhibitors WEB 2086 (WEB) and ginkgolide B (GB). The differential inhibitory effects of WEB and GB in reducing LPS-induced endothelial injury in the choroid indicate an important role for PAF-like lipids, which might not require the PAF receptor for their signaling. P-selectin glycoprotein ligand-1-mediated rolling of mouse leukocytes on immobilized P-selectin in our autoperfused microflow chamber assay revealed a significant reduction in rolling velocity on the cells' contact with PAF. Rolling cells that came in contact with PAF rapidly assumed morphological signs of cell activation, indicating that activation during rolling does not require integrins. Our results show a key role for PAF in mediating endothelial and leukocyte activation in acute ocular inflammation. Our in vivo molecular imaging provides a detailed view of cellular and molecular events in the complex physiological setting.—Garland, R. C., Sun, D., Zandi, S., Xie, F., Faez, S., Tayyari, F., Frimmel, S. A. F., Schering, A., Nakao, S., Hafezi-Moghadam, A. Noninvasive molecular imaging reveals role of PAF in leukocyte-endothelial interaction in LPS-induced ocular vascular injury

    Biomarkers of Animal Nutrition: From Seasonal to Lifetime Indicators of Environmental Conditions

    No full text
    Nutrition underpins survival and reproduction in animal populations; reliable nutritional biomarkers are therefore requisites to understanding environmental drivers of population dynamics. Biomarkers vary in scope of inference and sensitivity, making it important to know what and when to measure to properly quantify biological responses. We evaluated the repeatability of three nutritional biomarkers in a large, iteroparous mammal to evaluate the level of intrinsic and extrinsic contributions to those traits. During a long-term, individual-based study in a highly variable environment, we measured body fat, body mass, and lean mass of mule deer (Odocoileus hemionus) each autumn and spring. Lean mass was the most repeatable biomarker (0.72 autumn; 0.61 spring), followed by body mass (0.64 autumn; 0.53 spring), and then body fat (0.22 autumn; 0.01 spring). High repeatability in body and lean mass likely reflects primary structural composition, which is conserved across seasons. Low repeatability of body fat supports that it is the primary labile source of energy that is largely a product of environmental contributions of the previous season. Based on the disparate levels in repeatability among nutritional biomarkers, we contend that body and lean mass are better indicators of nutritional legacies (e.g., maternal effects), whereas body fat is a direct and sensitive reflection of recent nutritional gains and losses

    Genomewide Linkage Analyses of Bipolar Disorder: A New Sample of 250 Pedigrees from the National Institute of Mental Health Genetics Initiative

    Get PDF
    We conducted genomewide linkage analyses on 1,152 individuals from 250 families segregating for bipolar disorder and related affective illnesses. These pedigrees were ascertained at 10 sites in the United States, through a proband with bipolar I affective disorder and a sibling with bipolar I or schizoaffective disorder, bipolar type. Uniform methods of ascertainment and assessment were used at all sites. A 9-cM screen was performed by use of 391 markers, with an average heterozygosity of 0.76. Multipoint, nonparametric linkage analyses were conducted in affected relative pairs. Additionally, simulation analyses were performed to determine genomewide significance levels for this study. Three hierarchical models of affection were analyzed. Significant evidence for linkage (genomewide P<.05) was found on chromosome 17q, with a peak maximum LOD score of 3.63, at the marker D17S928, and on chromosome 6q, with a peak maximum LOD score of 3.61, near the marker D6S1021. These loci met both standard and simulation-based criteria for genomewide significance. Suggestive evidence of linkage was observed in three other regions (genomewide P<.10), on chromosomes 2p, 3q, and 8q. This study, which is based on the largest linkage sample for bipolar disorder analyzed to date, indicates that several genes contribute to bipolar disorder
    corecore