36 research outputs found

    Assessing neural tuning for object perception in schizophrenia and bipolar disorder with multivariate pattern analysis of fMRI data.

    Get PDF
    IntroductionDeficits in visual perception are well-established in schizophrenia and are linked to abnormal activity in the lateral occipital complex (LOC). Related deficits may exist in bipolar disorder. LOC contains neurons tuned to object features. It is unknown whether neural tuning in LOC or other visual areas is abnormal in patients, contributing to abnormal perception during visual tasks. This study used multivariate pattern analysis (MVPA) to investigate perceptual tuning for objects in schizophrenia and bipolar disorder.MethodsFifty schizophrenia participants, 51 bipolar disorder participants, and 47 matched healthy controls completed five functional magnetic resonance imaging (fMRI) runs of a perceptual task in which they viewed pictures of four different objects and an outdoor scene. We performed classification analyses designed to assess the distinctiveness of activity corresponding to perception of each stimulus in LOC (a functionally localized region of interest). We also performed similar classification analyses throughout the brain using a searchlight technique. We compared classification accuracy and patterns of classification errors across groups.ResultsStimulus classification accuracy was significantly above chance in all groups in LOC and throughout visual cortex. Classification errors were mostly within-category confusions (e.g., misclassifying one chair as another chair). There were no group differences in classification accuracy or patterns of confusion.ConclusionsThe results show for the first time MVPA can be used successfully to classify individual perceptual stimuli in schizophrenia and bipolar disorder. However, the results do not provide evidence of abnormal neural tuning in schizophrenia and bipolar disorder

    Efficacy of transoral fundoplication vs omeprazole for treatment of regurgitation in a randomized controlled trial.

    Get PDF
    Background The aim of this randomized, crossover study was to determine if transoral fundoplication (TF) could further improve clinical outcomes in partial responders to high-dose (HD) proton-pump inhibitor (PPI) therapy and to evaluate durability of TF. Methods In seven United States centers, patients with hiatal hernia ≤2 cm and abnormal esophageal acid exposure (EAE) were randomized to TF (n = 40) or HD PPIs (n = 23) group. At 6-month follow-up, PPI patients underwent crossover. We assessed clinical outcomes 6-month post TF in crossover patients (COP), as compared to 6-month of HD PPI therapy, and 12-month outcomes in patients initially randomized to TF. The primary outcome was symptom control evaluated by Reflux Disease Questionnaire and Reflux Symptom Index. Secondary outcomes included healing of esophagitis, normalization of EAE and PPI use after TF. We analyzed 21 COP and 39 TF patients. McNemar’s test or Fisher exact test was used to compare proportions. Results Of 63 randomized patients, 3 were lost to follow-up, leaving 39 TF and 21 COP for analyses. In the COP, TF further improved control of regurgitation and of atypical symptoms achieved after six months of HD PPIs. Of 20 patients with GERD symptoms after six months of high-dose PPI therapy, 65% (13/20) reported global elimination of troublesome regurgitation and atypical symptoms post TF off PPIs; 67% (6/9) reported no troublesome regurgitation. Esophagitis further healed in 75% (6/8) of patients. Seventy-one percent of COP patients were off PPIs six months following TF. Normalization of EAE decreased from 52% after HD PPIs (on PPIs) to 33% after TF (off PPIs), p =0.388. In the original TF group, 12-month post TF, 77% of patients achieved complete symptom control, 82% ceased PPI therapy, 100% healed esophagitis and 45% normalized EAE. Conclusions The results of this study indicate that in patients with incomplete symptom control on high-dose PPI therapy TF may provide further elimination of symptoms and esophagitis healing. In the original TF group, the clinical outcomes of TF remained stable between 6- and 12-month follow-up. Trial registration Clinicaltrials.gov: NCT01647958

    From inefficient to pop-out visual search in one week

    No full text
    We investigated changes in brain activity while participants learned to perform a visual conjunction search task over eight successive days. In an eventrelated functional magnetic resonance imaging (fMRI) experiment, subjects searched for a red-green disk amongst many mirror-symmetric green-red distractors. Over sessions, accuracy increased and search-time decreased, indicative of perceptual learning and popout. This behavioral change was correlated with a decrease in neuronal activation in frontal and parietal cortex and an increase in activity in early visual areas during search. Training was specific to the targetdistractor stimuli and did not transfer to other configurations. Our findings suggest that difficult visual search can be learned within a few days and that the trained skill is associated with distinct changes in activation in occipital, parietal and frontal cortex

    Neural correlates of context-dependent feature conjunction learning in visual search tasks

    No full text
    Many perceptual learning experiments show that repeated exposure to a basic visual feature such as a specific orientation or spatial frequency can modify perception of that feature, and that those perceptual changes are associated with changes in neural tuning early in visual processing. Such perceptual learning effects thus exert a bottom-up influence on subsequent stimulus processing, independent of task-demands or endogenous influences (e.g., volitional attention). However, it is unclear whether such bottom-up changes in perception can occur as more complex stimuli such as conjunctions of visual features are learned. It is not known whether changes in the efficiency with which people learn to process feature conjunctions in a task (e.g., visual search) reflect true bottom-up perceptual learning versus top-down, task-related learning (e.g., learning better control of endogenous attention). Here we show that feature conjunction learning in visual search leads to bottom-up changes in stimulus processing. First, using fMRI, we demonstrate that conjunction learning in visual search has a distinct neural signature: an increase in target-evoked activity relative to distractor-evoked activity (i.e., a relative increase in target salience). Second, we demonstrate that after learning, this neural signature is still evident even when participants passively view learned stimuli while performing an unrelated, attention-demanding task. This suggests that conjunction learning results in altered bottom-up perceptual processing of the learned conjunction stimuli (i.e., a perceptual change independent of the task). We further show that the acquired change in target-evoked activity is contextually dependent on the presence of distractors, suggesting that search array Gestalts are learned. (C) 2016 Wiley Periodicals, Inc

    Pretraining Cortical Thickness Predicts Subsequent Perceptual Learning Rate in a Visual Search Task

    No full text
    We report that preexisting individual differences in the cortical thickness of brain areas involved in a perceptual learning task predict the subsequent perceptual learning rate. Participants trained in a motion-discrimination task involving visual search for a "V"-shaped target motion trajectory among inverted "V"-shaped distractor trajectories. Motion-sensitive area MT+ (V5) was functionally identified as critical to the task: after 3 weeks of training, activity increased in MT+ during task performance, as measured by functional magnetic resonance imaging. We computed the cortical thickness of MT+ from anatomical magnetic resonance imaging volumes collected before training started, and found that it significantly predicted subsequent perceptual learning rates in the visual search task. Participants with thicker neocortex in MT+ before training learned faster than those with thinner neocortex in that area. A similar association between cortical thickness and training success was also found in posterior parietal cortex (PPC)
    corecore