9 research outputs found

    Comparison of darbepoetin alfa dosed weekly (QW) vs. extended dosing schedule (EDS) in the treatment of anemia in patients receiving multicycle chemotherapy in a randomized, phase 2, open-label trial

    Get PDF
    BACKGROUND: Chemotherapy-induced anemia (CIA) is responsive to treatment with erythropoiesis-stimulating agents (ESAs) such as darbepoetin alfa. Administration of ESAs on a synchronous schedule with chemotherapy administration could benefit patients by reducing clinic visits and potentially enhancing on-time chemotherapy delivery. METHODS: This phase 2, 25-week, open-label study evaluated the noninferiority of darbepoetin alfa administered weekly vs. as an extended dosing schedule (every 2 or 3 weeks) in patients with CIA. Patients were randomized 1:1 to an extended dosing schedule (EDS: darbepoetin alfa 300 μg Q2W if chemotherapy was QW, Q2W, or Q4W or darbepoetin alfa 500 μg Q3W if chemotherapy was Q3W) or weekly (150 μg QW regardless of chemotherapy schedule). Stratification factors included chemotherapy cycle length, screening hemoglobin (<10 g/dL vs. ≥10 g/dL), and tumor type (lung/gynecological vs. other nonmyeloid malignancies). The primary endpoint was change in hemoglobin from baseline to Week 13. RESULTS: Seven hundred fifty-two patients (374 QW patients; 378 EDS patients) received ≥1 dose of darbepoetin alfa and were included in the analysis. Demographics and disease state were similar between groups. Seventy-one percent of patients in the EDS group and 76% in the QW group achieved the target hemoglobin of ≥11.0 g/dL. There was a minimal difference in the primary endpoint of mean change in hemoglobin (baseline to Week 13) between the QW and the EDS groups (-0.04 g/dL; 95% confidence interval: -0.26, 0.17 g/dL). The upper limit of the 95% confidence interval was less than the prespecified limit of <0.75 g/dL, supporting noninferiority of the EDS dosing schedule. Reported adverse events were similar between groups. A slight increase in transfusions was reported in the QW group. CONCLUSION: Darbepoetin alfa, when administered synchronously with chemotherapy, on an EDS appears to be similarly efficacious to darbepoetin alfa weekly dosing with no unexpected adverse events. This study provides prospective data on how multiple dosing regimens available with darbepoetin alfa can be synchronized with chemotherapy administered across a range of dosing schedules. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT00144131

    A phase II trial of an alternative schedule of palbociclib and embedded serum TK1 analysis

    Get PDF
    Palbociclib 3-weeks-on/1-week-off, combined with hormonal therapy, is approved for hormone receptor positive (HR+)/HER2-negative (HER2-) advanced/metastatic breast cancer (MBC). Neutropenia is the most frequent adverse event (AE). We aim to determine whether an alternative 5-days-on/2-days-off weekly schedule reduces grade 3 and above neutropenia (G3 + ANC) incidence. In this single-arm phase II trial, patients with HR+/HER2- MBC received palbociclib 125 mg, 5-days-on/2-days-off, plus letrozole or fulvestrant per physician, on a 28-day cycle (C), as their first- or second-line treatment. The primary endpoint was G3 + ANC in the first 29 days (C1). Secondary endpoints included AEs, efficacy, and serum thymidine kinase 1 (sTK1) activity. At data-cutoff, fifty-four patients received a median of 13 cycles (range 2.6-43.5). The rate of G3 + ANC was 21.3% (95% CI: 11.2-36.1%) without G4 in C1, and 40.7% (95% CI: 27.9-54.9%), including 38.9% G3 and 1.8% G4, in all cycles. The clinical benefit rate was 80.4% (95% CI: 66.5-89.7%). The median progression-free survival (mPFS) (95% CI) was 19.75 (12.11-34.89), 33.5 (17.25-not reached [NR]), and 11.96 (10.43-NR) months, in the overall, endocrine sensitive or resistant population, respectively. High sTK1 at baseline, C1 day 15 (C1D15), and C2D1 were independently prognostic for shorter PFS (p = 9.91 × 1

    Genomic complexity predicts resistance to endocrine therapy and CDK4/6 inhibition in hormone receptor-positive (HR+)/HER2-negative metastatic breast cancer

    Get PDF
    PURPOSE: Clinical biomarkers to identify patients unlikely to benefit from CDK4/6 inhibition (CDK4/6i) in combination with endocrine therapy (ET) are lacking. We implemented a comprehensive circulating tumor DNA (ctDNA) analysis to identify genomic features for predicting and monitoring treatment resistance. EXPERIMENTAL DESIGN: ctDNA was isolated from 216 plasma samples collected from 51 patients with hormone receptor-positive (HR+)/HER2-negative (HER2-) metastatic breast cancer (MBC) on a phase II trial of palbociclib combined with letrozole or fulvestrant (NCT03007979). Boosted whole-exome sequencing (WES) was performed at baseline and clinical progression to evaluate genomic alterations, mutational signatures, and blood tumor mutational burden (bTMB). Low-pass whole-genome sequencing was performed at baseline and serial timepoints to assess blood copy-number burden (bCNB). RESULTS: High bTMB and bCNB were associated with lack of clinical benefit and significantly shorter progression-free survival (PFS) compared with patients with low bTMB or low bCNB (all P \u3c 0.05). Dominant APOBEC signatures were detected at baseline exclusively in cases with high bTMB (5/13, 38.5%) versus low bTMB (0/37, 0%; P = 0.0006). Alterations in ESR1 were enriched in samples with high bTMB (P = 0.0005). There was a high correlation between bTMB determined by WES and bTMB determined using a 600-gene panel (R = 0.98). During serial monitoring, an increase in bCNB score preceded radiographic progression in 12 of 18 (66.7%) patients. CONCLUSIONS: Genomic complexity detected by noninvasive profiling of bTMB and bCNB predicted poor outcomes in patients treated with ET and CDK4/6i and identified early disease progression before imaging. Novel treatment strategies including immunotherapy-based combinations should be investigated in this population

    Comparison of darbepoetin alfa dosed weekly (QW) vs. extended dosing schedule (EDS) in the treatment of anemia in patients receiving multicycle chemotherapy in a randomized, phase 2, open-label trial

    No full text
    Abstract Background Chemotherapy-induced anemia (CIA) is responsive to treatment with erythropoiesis-stimulating agents (ESAs) such as darbepoetin alfa. Administration of ESAs on a synchronous schedule with chemotherapy administration could benefit patients by reducing clinic visits and potentially enhancing on-time chemotherapy delivery. Methods This phase 2, 25-week, open-label study evaluated the noninferiority of darbepoetin alfa administered weekly vs. as an extended dosing schedule (every 2 or 3 weeks) in patients with CIA. Patients were randomized 1:1 to an extended dosing schedule (EDS: darbepoetin alfa 300 μg Q2W if chemotherapy was QW, Q2W, or Q4W or darbepoetin alfa 500 μg Q3W if chemotherapy was Q3W) or weekly (150 μg QW regardless of chemotherapy schedule). Stratification factors included chemotherapy cycle length, screening hemoglobin ( Results Seven hundred fifty-two patients (374 QW patients; 378 EDS patients) received ≥1 dose of darbepoetin alfa and were included in the analysis. Demographics and disease state were similar between groups. Seventy-one percent of patients in the EDS group and 76% in the QW group achieved the target hemoglobin of ≥11.0 g/dL. There was a minimal difference in the primary endpoint of mean change in hemoglobin (baseline to Week 13) between the QW and the EDS groups (-0.04 g/dL; 95% confidence interval: -0.26, 0.17 g/dL). The upper limit of the 95% confidence interval was less than the prespecified limit of Conclusion Darbepoetin alfa, when administered synchronously with chemotherapy, on an EDS appears to be similarly efficacious to darbepoetin alfa weekly dosing with no unexpected adverse events. This study provides prospective data on how multiple dosing regimens available with darbepoetin alfa can be synchronized with chemotherapy administered across a range of dosing schedules. Trial registration ClinicalTrials.gov Identifier NCT00144131.</p

    Immunogenomic profiling and pathological response results from a clinical trial of docetaxel and carboplatin in triple-negative breast cancer

    No full text
    Patients with triple-negative breast cancer (TNBC) who do not achieve pathological complete response (pCR) following neoadjuvant chemotherapy have a high risk of recurrence and death. Molecular characterization may identify patients unlikely to achieve pCR. This neoadjuvant trial was conducted to determine the pCR rate with docetaxel and carboplatin and to identify molecular alterations and/or immune gene signatures predicting pCR. Patients with clinical stages II/III TNBC received 6 cycles of docetaxel and carboplatin. The primary objective was to determine if neoadjuvant docetaxel and carboplatin would increase the pCR rate in TNBC compared to historical expectations. We performed whole-exome sequencing (WES) and immune profiling on pre-treatment tumor samples to identify alterations that may predict pCR. Thirteen matching on-treatment samples were also analyzed to assess changes in molecular profiles. Fifty-eight of 127 (45.7%) patients achieved pCR. There was a non-significant trend toward higher mutation burden for patients with residual cancer burden (RCB) 0/I versus RCB II/III (median 80 versus 68 variants, p 0.88). TP53 was the most frequently mutated gene, observed in 85.7% of tumors. EGFR, RB1, RAD51AP2, SDK2, L1CAM, KPRP, PCDHA1, CACNA1S, CFAP58, COL22A1, and COL4A5 mutations were observed almost exclusively in pre-treatment samples from patients who achieved pCR. Seven mutations in PCDHA1 were observed in pre-treatment samples from patients who did not achieve pCR. Several immune gene signatures including IDO1, PD-L1, interferon gamma signaling, CTLA4, cytotoxicity, tumor inflammation signature, inflammatory chemokines, cytotoxic cells, lymphoid, PD-L2, exhausted CD8, Tregs, and immunoproteasome were upregulated in pre-treatment samples from patients who achieved pCR. Neoadjuvant docetaxel and carboplatin resulted in a pCR of 45.7%. WES and immune profiling differentiated patients with and without pCR. Clinical trial information: NCT02124902, Registered 24 April 2014 & NCT02547987, Registered 10 September 2015

    Discovery of 2‑Pyridinone Aminals: A Prodrug Strategy to Advance a Second Generation of HIV‑1 Integrase Strand Transfer Inhibitors

    No full text
    The search for new molecular constructs that resemble the critical two-metal binding pharmacophore required for HIV integrase strand transfer inhibition represents a vibrant area of research within drug discovery. Here we present the discovery of a new class of HIV integrase strand transfer inhibitors based on the 2-pyridinone core of MK-0536. These efforts led to the identification of two lead compounds with excellent antiviral activity and preclinical pharmacokinetic profiles to support a once-daily human dose prediction. Dose escalating PK studies in dog revealed significant issues with limited oral absorption and required an innovative prodrug strategy to enhance the high-dose plasma exposures of the parent molecules

    Discovery of 2‑Pyridinone Aminals: A Prodrug Strategy to Advance a Second Generation of HIV‑1 Integrase Strand Transfer Inhibitors

    No full text
    The search for new molecular constructs that resemble the critical two-metal binding pharmacophore required for HIV integrase strand transfer inhibition represents a vibrant area of research within drug discovery. Here we present the discovery of a new class of HIV integrase strand transfer inhibitors based on the 2-pyridinone core of MK-0536. These efforts led to the identification of two lead compounds with excellent antiviral activity and preclinical pharmacokinetic profiles to support a once-daily human dose prediction. Dose escalating PK studies in dog revealed significant issues with limited oral absorption and required an innovative prodrug strategy to enhance the high-dose plasma exposures of the parent molecules
    corecore