3,205 research outputs found

    TRACE-derived temperature and emission measure profiles along long-lived coronal loops: the role of filamentation

    Get PDF
    In a recent letter (ApJ 517, L155) Lenz et al. have shown the evidence of uniform temperature along steady long coronal loops observed by TRACE in two different passbands (171 A and 195 A filters). We propose that such an evidence can be explained by the sub-arcsecond structuring of the loops across the magnetic field lines. In this perspective, we present a model of a bundle of six thin parallel hydrostatic filaments with temperature stratification dictated by detailed energy balance and with temperatures at their apex ranging between 0.8 and 5 MK. If analyzed as a single loop, the bundle would appear isothermal along most of its length.Comment: 9 pages, 4 figs, LaTeX text, PostScript figure

    Non-equilibrium of Ionization and the Detection of Hot Plasma in Nanoflare-heated Coronal Loops

    Full text link
    Impulsive nanoflares are expected to transiently heat the plasma confined in coronal loops to temperatures of the order of 10 MK. Such hot plasma is hardly detected in quiet and active regions, outside flares. During rapid and short heat pulses in rarified loops the plasma can be highly out of equilibrium of ionization. Here we investigate the effects of the non-equilibrium of ionization (NEI) on the detection of hot plasma in coronal loops. Time-dependent loop hydrodynamic simulations are specifically devoted to this task, including saturated thermal conduction, and coupled to the detailed solution of the equations of ionization rate for several abundant elements. In our simulations, initially cool and rarified magnetic flux tubes are heated to 10 MK by nanoflares deposited either at the footpoints or at the loop apex. We test for different pulse durations, and find that, due to NEI effects, the loop plasma may never be detected at temperatures above ~5 MK for heat pulses shorter than about 1 min. We discuss some implications in the framework of multi-stranded nanoflare-heated coronal loops.Comment: 22 pages, 7 figures, accepted for publicatio

    Bright X-ray flares in Orion young stars from COUP: evidence for star-disk magnetic fields?

    Get PDF
    We have analyzed a number of intense X-ray flares observed in the Chandra Orion Ultradeep Project (COUP), a 13 days observation of the Orion Nebula Cluster (ONC). Analysis of the flare decay allows to determine the size, peak density and magnetic field of the flaring structure. A total of 32 events (the most powerful 1% of COUP flares), have sufficient statistics for the analysis. A broad range of decay times (from 10 to 400 ks) are present in the sample. Peak flare temperatures are often very high, with half of the flares in the sample showing temperatures in excess of 100 MK. Significant sustained heating is present in the majority of the flares. The magnetic structures which are found, are in a number of cases very long, with semi-lengths up to 10^12 cm, implying the presence of magnetic fields of hundreds of G extending to comparable distance from the stellar photosphere. These very large sizes for the flaring structures ($ >> R_*) are not found in more evolved stars, where, almost invariably, the same type of analysis results in structures with L <= R_*. As the majority of young stars in the ONC are surrounded by disks, we speculate that the large magnetic structures which confine the flaring plasma are actually the same type of structures which channel the plasma in the magnetospheric accretion paradigm, connecting the star's photosphere with the accretion disk.Comment: Accepted to ApJS, COUP special issu

    X-Raying the Dark Side of Venus - Scatter from Venus Magnetotail?

    Full text link
    This work analyzes the X-ray, EUV and UV emission apparently coming from the Earth-facing (dark) side of Venus as observed with Hinode/XRT and SDO/AIA during a transit across the solar disk occurred in 2012. We have measured significant X-Ray, EUV and UV flux from Venus dark side. As a check we have also analyzed a Mercury transit across the solar disk, observed with Hinode/XRT in 2006. We have used the latest version of the Hinode/XRT Point Spread Function (PSF) to deconvolve Venus and Mercury X-ray images, in order to remove possible instrumental scattering. Even after deconvolution, the flux from Venus shadow remains significant while in the case of Mercury it becomes negligible. Since stray-light contamination affects the XRT Ti-poly filter data from the Venus transit in 2012, we performed the same analysis with XRT Al-mesh filter data, which is not affected by the light leak. Even the Al-mesh filter data show residual flux. We have also found significant EUV (304 A, 193 A, 335 A) and UV (1700 A) flux in Venus shadow, as measured with SDO/AIA. The EUV emission from Venus dark side is reduced when appropriate deconvolution methods are applied; the emission remains significant, however. The light curves of the average flux of the shadow in the X-ray, EUV, and UV bands appear different as Venus crosses the solar disk, but in any of them the flux is, at any time, approximately proportional to the average flux in a ring surrounding Venus, and therefore proportional to the average flux of the solar regions around Venus obscuring disk line of sight. The proportionality factor depends on the band. This phenomenon has no clear origin; we suggest it may be due to scatter occurring in the very long magnetotail of Venus.Comment: This paper has been accepted in The Astrophysical Journa

    Nanoflare Evidence from Analysis of the X-Ray Variability of an Active Region Observed with Hinode/XRT

    Get PDF
    The heating of the solar corona is one of the big questions in astrophysics. Rapid pulses called nanoflares are among the best candidate mechanisms. The analysis of the time variability of coronal X-ray emission is potentially a very useful tool to detect impulsive events. We analyze the small-scale variability of a solar active region in a high cadence Hinode/XRT observation. The dataset allows us to detect very small deviations of emission fluctuations from the distribution expected for a constant rate. We discuss the deviations in the light of the pulsed-heating scenario.Comment: 6 pages, 4 figure

    XMM-Newton observations of the supernova remnant IC443: I. soft X-ray emission from shocked interstellar medium

    Get PDF
    The shocked interstellar medium around IC443 produces strong X-ray emission in the soft energy band (E<1.5 keV). We present an analysis of such emission as observed with the EPIC MOS cameras on board the XMM-Newotn observatory, with the purpose to find clear signatures of the interactions with the interstellar medium (ISM) in the X-ray band, which may complement results obtained in other wavelenghts. We found that the giant molecular cloud mapped in CO emission is located in the foreground and gives an evident signature in the absorption of X-rays. This cloud may have a torus shape and the part of torus interacting with the IC443 shock gives rise to 2MASS-K emission in the southeast. The measured density of emitting X-ray shocked plasma increases toward the northeastern limb, where the remnant is interacting with an atomic cloud. We found an excellent correlation between emission in the 0.3-0.5 keV band and bright optical/radio filament on large spatial scales. The partial shell structure seen in this band therefore traces the encounter with the atomic cloud.Comment: 10 pages, 10 figures, accepted for publication in ApJ (20 September 2006, v649). For hi-res figures, see http://www.astropa.unipa.it/Library/OAPA_preprints/ic443ele1.ps.g

    Coronal loop hydrodynamics. The solar flare observedon November 12 1980 revisited: the UV line emission

    Get PDF
    We revisit a well-studied solar flare whose X-ray emission originating from a simple loop structure was observed by most of the instruments on board SMM on November 12 1980. The X-ray emission of this flare, as observed with the XRP, was successfully modeled previously. Here we include a detailed modeling of the transition region and we compare the hydrodynamic results with the UVSP observations in two EUV lines, measured in areas smaller than the XRP rasters, covering only some portions of the flaring loop (the top and the foot-points). The single loop hydrodynamic model, which fits well the evolution of coronal lines (those observed with the XRP and the \FeXXI 1354.1 \AA line observed with the UVSP) fails to model the flux level and evolution of the \OV 1371.3 \AA line.Comment: A&A, in press, 6 pages, 5 figure

    The Sun as an X-ray Star: III. Flares

    Get PDF
    In previous works we have developed a method to convert solar X-ray data, collected with the Yohkoh/SXT, into templates of stellar coronal observations. Here we apply the method to several solar flares, for comparison with stellar X-ray flares. Eight flares, from weak (GOES class C5.8) to very intense ones (X9) are selected as representative of the flaring Sun. The emission measure distribution vs. temperature, EM(T), of the flaring regions is derived from Yohkoh/SXT observations in the rise, peak and decay of the flares. The EM(T) is rather peaked and centered around T≈107T \approx 10^7 K for most of the time. Typically, it grows during the rise phase of the flare, and then it decreases and shifts toward lower temperatures during the decay, more slowly if there is sustained heating. The most intense flare we studied shows emission measure even at very high temperature (T≈108T \approx 10^8 K). Time-resolved X-ray spectra both unfiltered and filtered through the instrumental responses of the non-solar instruments ASCA/SIS and ROSAT/PSPC are then derived. Synthesized ASCA/SIS and ROSAT/PSPC spectra are generally well fitted with single thermal components at temperatures close to that of the EM(T) maximum, albeit two thermal components are needed to fit some flare decays. ROSAT/PSPC spectra show that solar flares are in a two-orders of magnitude flux range (106−10810^6 - 10^8 erg cm−2^{-2} s−1^{-1}) and a narrow PSPC hardness ratio range, however higher than that of typical non-flaring solar-like stars.Comment: 32 pages, 8 figures, 3 table

    Bayesian Estimation of Hardness Ratios: Modeling and Computations

    Get PDF
    A commonly used measure to summarize the nature of a photon spectrum is the so-called Hardness Ratio, which compares the number of counts observed in different passbands. The hardness ratio is especially useful to distinguish between and categorize weak sources as a proxy for detailed spectral fitting. However, in this regime classical methods of error propagation fail, and the estimates of spectral hardness become unreliable. Here we develop a rigorous statistical treatment of hardness ratios that properly deals with detected photons as independent Poisson random variables and correctly deals with the non-Gaussian nature of the error propagation. The method is Bayesian in nature, and thus can be generalized to carry out a multitude of source-population--based analyses. We verify our method with simulation studies, and compare it with the classical method. We apply this method to real world examples, such as the identification of candidate quiescent Low-mass X-ray binaries in globular clusters, and tracking the time evolution of a flare on a low-mass star.Comment: 43 pages, 10 figures, 3 tables; submitted to Ap

    Detailed diagnostics of an X-ray flare in the single giant HR 9024

    Get PDF
    We analyze a 96 ks Chandra/HETGS observation of the single G-type giant HR 9024. The high flux allows us to examine spectral line and continuum diagnostics at high temporal resolution, to derive plasma parameters. A time-dependent 1D hydrodynamic model of a loop with half-length L=5×1011L = 5 \times 10^{11} cm (∌R⋆/2\sim R_{\star}/2), cross-section radius r=4.3×1010r = 4.3 \times 10^{10} cm, with a heat pulse of 15 ks and 2×10112 \times 10^{11}~erg cm−2^{-2} s−1^{-1} deposited at the loop footpoints, satisfactorily reproduces the observed evolution of temperature and emission measure, derived from the analysis of the strong continuum emission. For the first time we can compare predictions from the hydrodynamic model with single spectral features, other than with global spectral properties. We find that the model closely matches the observed line emission, especially for the hot (∌108\sim 10^8 K) plasma emission of the FeXXV complex at ∌1.85\sim 1.85\AA. The model loop has L/R⋆∌1/2L/R_{\star} \sim 1/2 and aspect ratio r/L∌0.1r/L \sim 0.1 as typically derived for flares observed in active stellar coronae, suggesting that the underlying physics is the same for these very dynamic and extreme phenomena in stellar coronae independently on stellar parameters and evolutionary stage.Comment: 26 pages. Accepted for publication on the Astrophysical Journa
    • 

    corecore