74 research outputs found
Single-photon Resolved Cross-Kerr Interaction for Autonomous Stabilization of Photon-number States
Quantum states can be stabilized in the presence of intrinsic and
environmental losses by either applying active feedback conditioned on an
ancillary system or through reservoir engineering. Reservoir engineering
maintains a desired quantum state through a combination of drives and designed
entropy evacuation. We propose and implement a quantum reservoir engineering
protocol that stabilizes Fock states in a microwave cavity. This protocol is
realized with a circuit quantum electrodynamics platform where a Josephson
junction provides direct, nonlinear coupling between two superconducting
waveguide cavities. The nonlinear coupling results in a single photon resolved
cross-Kerr effect between the two cavities enabling a photon number dependent
coupling to a lossy environment. The quantum state of the microwave cavity is
discussed in terms of a net polarization and is analyzed by a measurement of
its steady state Wigner function.Comment: 8 pages, 6 figure
Implementing and characterizing precise multi-qubit measurements
There are two general requirements to harness the computational power of
quantum mechanics: the ability to manipulate the evolution of an isolated
system and the ability to faithfully extract information from it. Quantum error
correction and simulation often make a more exacting demand: the ability to
perform non-destructive measurements of specific correlations within that
system. We realize such measurements by employing a protocol adapted from [S.
Nigg and S. M. Girvin, Phys. Rev. Lett. 110, 243604 (2013)], enabling real-time
selection of arbitrary register-wide Pauli operators. Our implementation
consists of a simple circuit quantum electrodynamics (cQED) module of four
highly-coherent 3D transmon qubits, collectively coupled to a high-Q
superconducting microwave cavity. As a demonstration, we enact all seven
nontrivial subset-parity measurements on our three-qubit register. For each we
fully characterize the realized measurement by analyzing the detector
(observable operators) via quantum detector tomography and by analyzing the
quantum back-action via conditioned process tomography. No single quantity
completely encapsulates the performance of a measurement, and standard figures
of merit have not yet emerged. Accordingly, we consider several new fidelity
measures for both the detector and the complete measurement process. We measure
all of these quantities and report high fidelities, indicating that we are
measuring the desired quantities precisely and that the measurements are highly
non-demolition. We further show that both results are improved significantly by
an additional error-heralding measurement. The analyses presented here form a
useful basis for the future characterization and validation of quantum
measurements, anticipating the demands of emerging quantum technologies.Comment: 10 pages, 5 figures, plus supplemen
Confining the state of light to a quantum manifold by engineered two-photon loss
Physical systems usually exhibit quantum behavior, such as superpositions and
entanglement, only when they are sufficiently decoupled from a lossy
environment. Paradoxically, a specially engineered interaction with the
environment can become a resource for the generation and protection of quantum
states. This notion can be generalized to the confinement of a system into a
manifold of quantum states, consisting of all coherent superpositions of
multiple stable steady states. We have experimentally confined the state of a
harmonic oscillator to the quantum manifold spanned by two coherent states of
opposite phases. In particular, we have observed a Schrodinger cat state
spontaneously squeeze out of vacuum, before decaying into a classical mixture.
This was accomplished by designing a superconducting microwave resonator whose
coupling to a cold bath is dominated by photon pair exchange. This experiment
opens new avenues in the fields of nonlinear quantum optics and quantum
information, where systems with multi-dimensional steady state manifolds can be
used as error corrected logical qubits
Recommended from our members
High-temperature superconducting thin-film-based electronic devices
This the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project involved optimization of processing of Y123 and Tl-2212 thin films deposited on novel substrates for advanced electronic devices. The Y123 films are the basis for development of Josephson Junctions to be utilized in magnetic sensors. Microwave cavities based on the Tl-2212 films are the basis for subsequent applications as communication antennas and transmitters in satellites
Demonstration of Universal Parametric Entangling Gates on a Multi-Qubit Lattice
We show that parametric coupling techniques can be used to generate selective
entangling interactions for multi-qubit processors. By inducing coherent
population exchange between adjacent qubits under frequency modulation, we
implement a universal gateset for a linear array of four superconducting
qubits. An average process fidelity of is estimated for
three two-qubit gates via quantum process tomography. We establish the
suitability of these techniques for computation by preparing a four-qubit
maximally entangled state and comparing the estimated state fidelity against
the expected performance of the individual entangling gates. In addition, we
prepare an eight-qubit register in all possible bitstring permutations and
monitor the fidelity of a two-qubit gate across one pair of these qubits.
Across all such permutations, an average fidelity of
is observed. These results thus offer a path to a scalable architecture with
high selectivity and low crosstalk
Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal
Here we demonstrate that water-infiltrated nanoporous glass electrically
switches an oxide semiconductor from an insulator to metal. We fabricated the
field effect transistor structure on an oxide semiconductor, SrTiO3, using
100%-water-infiltrated nanoporous glass - amorphous 12CaO*7Al2O3 - as the gate
insulator. For positive gate voltage, electron accumulation, water electrolysis
and electrochemical reduction occur successively on the SrTiO3 surface at room
temperature, leading to the formation of a thin (~3 nm) metal layer with an
extremely high electron concentration of 10^15-10^16 cm^-2, which exhibits
exotic thermoelectric behaviour.Comment: 21 pages, 12 figure
- …