1,169 research outputs found
A large-scale R-matrix calculation for electron-impact excitation of the Ne O-like ion
The five J levels within a or ground state complex provide
an excellent testing ground for the comparison of theoretical line ratios with
astrophysically observed values, in addition to providing valuable electron
temperature and density diagnostics. The low temperature nature of the line
ratios ensure that the theoretically derived values are sensitive to the
underlying atomic structure and electron-impact excitation rates. Previous
R-matrix calculations for the Ne O-like ion exhibit large spurious
structure in the cross sections at higher electron energies, which may affect
Maxwellian averaged rates even at low temperatures. Furthermore, there is an
absence of comprehensive excitation data between the excited states that may
provide newer diagnostics to compliment the more established lines discussed in
this paper. To resolve these issues, we present both a small scale 56-level
Breit-Pauli (BP) calculation and a large-scale 554 levels R-matrix Intermediate
Coupling Frame Transformation (ICFT) calculation that extends the scope and
validity of earlier JAJOM calculations both in terms of the atomic structure
and scattering cross sections. Our results provide a comprehensive
electron-impact excitation data set for all transitions to higher shells.
The fundamental atomic data for this O-like ion is subsequently used within a
collisional radiative framework to provide the line ratios across a range of
electron temperatures and densities of interest in astrophysical observations.Comment: 17 pages, 8 figure
K-shell photoionization of ground-state Li-like boron ions [B]: Experiment and Theory
Absolute cross sections for the K-shell photoionization of ground-state
Li-like boron [B(1s2s S)] ions were measured by employing the
ion-photon merged-beams technique at the Advanced Light Source synchrotron
radiation facility. The energy ranges 197.5--200.5 eV, 201.9--202.1 eV of the
[1s(2s\,2p)P]P and [1s(2s\,2p)P] P
resonances, respectively, were investigated using resolving powers of up to
17\,600. The energy range of the experiments was extended to about 238.2 eV
yielding energies of the most prominent
[1s(2\,n)]P resonances with an absolute accuracy
of the order of 130 ppm. The natural linewidths of the [1s(2s\,2p)P]
P and [1s(2s\,2p)P] P resonances were measured
to be meV and meV, respectively, which compare
favourably with theoretical results of 4.40 meV and 30.53 meV determined using
an intermediate coupling R-matrix method.Comment: 6 figures and 2 table
K-shell photoionization of ground-state Li-like carbon ions [C]: experiment, theory and comparison with time-reversed photorecombination
Absolute cross sections for the K-shell photoionization of ground-state
Li-like carbon [C(1s2s S)] ions were measured by employing the
ion-photon merged-beams technique at the Advanced Light Source. The energy
ranges 299.8--300.15 eV, 303.29--303.58 eV and 335.61--337.57 eV of the
[1s(2s2p)P]P, [1s(2s2p)P]P and [(1s2s)S 3p]P
resonances, respectively, were investigated using resolving powers of up to
6000. The autoionization linewidth of the [1s(2s2p)P]P resonance was
measured to be meV and compares favourably with a theoretical result
of 26 meV obtained from the intermediate coupling R-Matrix method. The present
photoionization cross section results are compared with the outcome from
photorecombination measurements by employing the principle of detailed balance.Comment: 3 figures and 2 table
State-resolved valence shell photoionization of Be-like ions: experiment and theory
High-resolution photoionization experiments were carried out using beams of
Be-like C, N, and O ions with roughly equal populations of
the S ground-state and the P manifold of metastable components. The
energy scales of the experiments are calibrated with uncertainties of 1 to 10
meV depending on photon energy. Resolving powers beyond 20,000 were reached
allowing for the separation of contributions from the individual metastable
P, P, and P states. The measured data compare
favourably with semi-relativistic Breit-Pauli R-matrixComment: 23 figures and 3 table
Oscillator strengths with pseudopotentials
The time-dependent local-density approximation (TDLDA) is shown to remain
accurate in describing the atomic response of IB elements under the additional
approximation of using pseudopotentials to treat the effects of core electrons.
This extends the work of Zangwill and Soven who showed the utility of the
all-electron TDLDA in the atomic response problem.Comment: 13 pages including 3 Postscript figure
Effects of Land Crabs on Leaf Litter Distributions and Accumulations in a Mainland Tropical Rain Forest 1
The effect of the fossorial land crab Gecarcinus quadratus (Gecarcinidae) on patterns of accumulation and distribution of leaf litter was studied for two years in the coastal primary forests of Costa Rica's Corcovado National Park. Within this mainland forest, G, quadratus achieve densities up to 6 crabs/m 2 in populations extending along the Park's Pacific coastline and inland for ca 600 m. Crabs selectively forage for fallen leaf litter and relocate what they collect to burrow chambers that extend from 15 to 150 cm deep ( N = 44), averaging (±SE) 48.9 ± 3.0 cm. Preference trials suggested that leaf choice by crabs may be species-specific. Excavated crab burrows revealed maximum leaf collections of 11.75 g dry massâ 2.5 times more leaf litter than collected by square-meter leaf fall traps over several seven-day sampling periods. Additionally, experimental crab exclosures (25 m 2 ) were established using a repeated measures randomized block design to test for changes in leaf litter as a function of reduced crab density. Exclosures accumulated significantly more (5.6 ± 3.9 times) leaf litter than did control treatments during the wet, but not the dry, seasons over this two-year study. Such extensive litter relocation by land crabs may affect profiles of soil organic carbon, rooting, and seedling distributions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73250/1/j.1744-7429.2003.tb00590.x.pd
Genetic Patterns in Peripheral Marine Populations of the Fusilier Fish Caesio Cuning Within the Kuroshio Current
Aim: Mayrâs centralâperipheral population model (CCPM) describes the marked differences between central and peripheral populations in genetic diversity, gene flow, and census size. When isolation leads to genetic divergence, these peripheral populations have high evolutionary value and can influence biogeographic patterns. In tropical marine species with pelagic larvae, powerful westernâboundary currents have great potential to shape the genetic characteristics of peripheral populations at latitudinal extremes. We tested for the genetic patterns expected by the CCPM in peripheral populations that are located within the Kuroshio Current for the IndoâPacific reef fish, Caesio cuning.
Methods: We used a panel of 2,677 SNPs generated from restriction siteâassociated DNA (RAD) sequencing to investigate genetic diversity, relatedness, effective population size, and spatial patterns of population connectivity from central to peripheral populations of C. cuning along the Kuroshio Current.
Results: Principal component and cluster analyses indicated a genetically distinct lineage at the periphery of the C. cuning species range and examination of SNPs putatively under divergent selection suggested potential for local adaptation in this region. We found signatures of isolationâbyâdistance and significant genetic differences between nearly all sites. Sites closest to the periphery exhibited increased withinâpopulation relatedness and decreased effective population size.
Main Conclusions: Despite the potential for homogenizing gene flow along the Kuroshio Current, peripheral populations in C. cuning conform to the predictions of the CCPM. While oceanography, habitat availability, and dispersal ability are all likely to shape the patterns found in C. cuning across this centralâperipheral junction, the impacts of genetic drift and natural selection in increasing smaller peripheral populations appear to be probable influences on the lineage divergence found in the Ryukyu Islands
Growth impacts in a changing ocean: insights from two coral reef fishes in an extreme environment
Determining the life-history consequences for fishes living in extreme and variable environments will be vital in predicting the likely impacts of ongoing climate change on reef fish demography. Here, we compare size-at-age and maximum body size of two common reef fish species (Lutjanus ehrenbergii and Pomacanthus maculosus) between the environmentally extreme Arabian/Persian Gulf (âArabian Gulfâ) and adjacent comparably benign Oman Sea. Additionally, we use otolith increment width profiles to investigate the influence of temperature, salinity and productivity on the individual growth rates. Individuals of both species showed smaller size-at-age and lower maximum size in the Arabian Gulf compared to conspecifics in the less extreme and less variable environment of the Oman Sea, suggesting a life-history trade-off between size and metabolic demands. Salinity was the best environmental predictor of interannual growth across species and regions, with low growth corresponding to more saline conditions. However, salinity had a weaker negative effect on interannual growth of fishes in the Arabian Gulf than in the Oman Sea, indicating Arabian Gulf populations may be better able to acclimate to changing environmental conditions. Temperature had a weak positive effect on the interannual growth of fishes in the Arabian Gulf, suggesting that these populations may still be living within their thermal windows. Our results highlight the potential importance of osmoregulatory cost in impacting growth, and the need to consider the effect of multiple stressors when investigating the consequences of future climate change on fish demography
- âŠ