14,965 research outputs found
Understanding the fidelity effect when evaluating games with children
There have been a number of studies that have compared evaluation results from prototypes of different fidelities but very few of these are with children. This paper reports a comparative study of three prototypes ranging from low fidelity to high fidelity within the context of mobile games, using a between subject design with 37 participants aged 7 to 9. The children played a matching game on either an iPad, a paper prototype using screen shots of the actual game or a sketched version. Observational data was captured to establish the usability problems, and two tools from the Fun Toolkit were used to measure user experience. The results showed that there was little difference for user experience between the three prototypes and very few usability problems were unique to a specific prototype. The contribution of this paper is that children using low-fidelity prototypes can effectively evaluate games of this genre and style
Ground State Entropy of the Potts Antiferromagnet on Cyclic Strip Graphs
We present exact calculations of the zero-temperature partition function
(chromatic polynomial) and the (exponent of the) ground-state entropy for
the -state Potts antiferromagnet on families of cyclic and twisted cyclic
(M\"obius) strip graphs composed of -sided polygons. Our results suggest a
general rule concerning the maximal region in the complex plane to which
one can analytically continue from the physical interval where . The
chromatic zeros and their accumulation set exhibit the rather
unusual property of including support for and provide further
evidence for a relevant conjecture.Comment: 7 pages, Latex, 4 figs., J. Phys. A Lett., in pres
Ground State Entropy of Potts Antiferromagnets on Cyclic Polygon Chain Graphs
We present exact calculations of chromatic polynomials for families of cyclic
graphs consisting of linked polygons, where the polygons may be adjacent or
separated by a given number of bonds. From these we calculate the (exponential
of the) ground state entropy, , for the q-state Potts model on these graphs
in the limit of infinitely many vertices. A number of properties are proved
concerning the continuous locus, , of nonanalyticities in . Our
results provide further evidence for a general rule concerning the maximal
region in the complex q plane to which one can analytically continue from the
physical interval where .Comment: 27 pages, Latex, 17 figs. J. Phys. A, in pres
Bulk and edge correlations in the compressible half-filled quantum Hall state
We study bulk and edge correlations in the compressible half-filled state,
using a modified version of the plasma analogy. The corresponding plasma has
anomalously weak screening properties, and as a consequence we find that the
correlations along the edge do not decay algebraically as in the Laughlin
(incompressible) case, while the bulk correlations decay in the same way. The
results suggest that due to the strong coupling between charged modes on the
edge and the neutral Fermions in the bulk, reflected by the weak screening in
the plasma analogue, the (attractive) correlation hole is not well defined on
the edge. Hence, the system there can be modeled as a free Fermi gas of {\em
electrons} (with an appropriate boundary condition). We finally comment on a
possible scenario, in which the Laughlin-like dynamical edge correlations may
nevertheless be realized.Comment: package now includes the file epsfig.sty, needed to incorporate
properly the 8 magnificent figure
Efficient operation of a high-power X-band gyroklystron
Experimental studies of amplification in a two-cavity X-band gyroklystron are reported. The system utilizes a thermionic magnetron injection gun at voltages up to 440 kV and currents up to 190 A in 1-μs pulses. Optimum performance is achieved by tapering the magnetic-field profile. Peak powers of 20 MW in the TE01 mode at 9.87 GHz are measured with calibrated crystals and with methanol calorimetry. Resultant efficiencies are in excess of 31% and large-signal gains surpass 26 dB. The experimental results are in good agreement with simulated results from a partially self-consistent, nonlinear, steady-state code
Vortex lattices in the lowest Landau level for confined Bose-Einstein condensates
We present the results of numerical calculations of the groundstates of
weakly-interacting Bose-Einstein condensates containing large numbers of
vortices. Our calculations show that these groundstates appear to be close to
uniform triangular vortex lattices. However, slight deviations from a uniform
triangular lattice have dramatic consequences on the overall particle
distribution. In particular, we demonstrate that the overall particle
distribution averaged on a lengthscale large compared to the vortex lattice
constant is well approximated by a Thomas-Fermi profile.Comment: 5 pages, 4 figure
Spin-Peierls states of quantum antiferromagnets on the lattice
We discuss the quantum paramagnetic phases of Heisenberg antiferromagnets on
the 1/5-depleted square lattice found in . The possible phases of
the quantum dimer model on this lattice are obtained by a mapping to a
quantum-mechanical height model. In addition to the ``decoupled'' phases found
earlier, we find a possible intermediate spin-Peierls phase with
spontaneously-broken lattice symmetry. Experimental signatures of the different
quantum paramagnetic phases are discussed.Comment: 9 pages; 2 eps figure
Slave-boson approach to the infinite-U Anderson-Holstein impurity model
The infinite- Anderson-Holstein impurity model is studied with a focus on
the interplay between the strong electron correlation and the weak
electron-phonon interaction. The slave boson method has been employed in
combination with the large degeneracy expansion (1/N) technique. The charge and
spin susceptibilities and the phonon propagator are obtained in the
approximation scheme where the saddle point configuration and the Gaussian 1/N
fluctuations are taken into account. The spin susceptibility is found not to be
renormalized by electron-phonon interaction, while the charge susceptibility is
renormalized.
From the renormalized charge susceptibility the Kondo temperature is found to
increase by the electron-phonon interaction. It turns out that the bosonic 1/N
Gaussian fluctuations play a very crucial role, in particular, for the phonon
propagator.Comment: 12pages, 3 figures. Published in Physical Review
Gapless Spin-Fluid Ground State in a Random Quantum Heisenberg Magnet
We examine the spin- quantum Heisenberg magnet with Gaussian-random,
infinite-range exchange interactions. The quantum-disordered phase is accessed
by generalizing to symmetry and studying the large limit. For large
the ground state is a spin-glass, while quantum fluctuations produce a
spin-fluid state for small . The spin-fluid phase is found to be generically
gapless - the average, zero temperature, local dynamic spin-susceptibility
obeys \bar{\chi} (\omega ) \sim \log(1/|\omega|) + i (\pi/2) \mbox{sgn}
(\omega) at low frequencies. This form is identical to the phenomenological
`marginal' spectrum proposed by Varma {\em et. al.\/} for the doped cuprates.Comment: 13 pages, REVTEX, 2 figures available by request from
[email protected]
- …