25 research outputs found
The Value of SSTR2 Receptor-Targeted PET/CT in Proton Irradiation of Grade I Meningioma
Grade I meningioma is the most common intracranial tumor in adults. The standard imaging for its radiation treatment planning is MRI, and [68Ga]1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated PET/CT can further improve delineation. We investigated the impact of PET/CT on interobserver variability in identifying the tumor in 30 anonymized patients. Four radiation oncologists independently contoured residual tumor volume, first using only MRI and subsequently with the addition of PET/CT. Conformity indices (CIs) were calculated between common volumes, observer pairs and compared to the volumes previously used. Overall, 29/30 tumors (96.6%) showed [68Ga]Ga-DOTA avidity. With help of PET/CT, the participants identified six cases with new lesions not recognized in MRI, including two where new findings would critically alter the target volume used for radiation. The PET/CT-aided series demonstrated superior conformity, as compared to MRI-only between observer pairs (median CI = 0.58 vs. 0.49; p = 0.002), common volumes (CI = 0.34; vs. 0.29; p = 0.002) and matched better the reference volumes actually used for patient treatment (CI = 0.55 vs. 0.39; p = 0.008). Cis in the PET/CT-aided series were lower for meningiomas outside of the skull base (0.2 vs. 0.44; p = 0.03). We conclude that SSTR2 receptor-targeted PET/CT is a valuable tool for planning particle therapy of incompletely resected meningioma. It serves both as a workup procedure and an aid for delineation process that reduces the likelihood of marginal misses
Normofractionated and moderately hypofractionated proton therapy: Comparison of acute toxicity and early quality of life outcomes
Aim Data on the safety of moderately hypofractionated proton beam therapy (PBT) are limited. The aim of this study is to compare the acute toxicity and early quality of life (QoL) outcomes of normofractionated (nPBT) and hypofractionated PBT (hPBT). Results Overall, the highest toxicity grades of G0, G1, G2, and G3 were observed in 7 (5%), 40 (28.8%), 78 (56.1%), and 15 (10.8%) patients, respectively. According to organ and site, no statistically significant differences were detected in the majority of toxicity comparisons (66.7%). For A&P, hPBT showed a more favorable toxicity profile as compared to nPBT with a higher frequency of G0 and G1 and a lower frequency of G2 and G3 events (p = 0.04), more patients with improvement (95.7% vs 70%, p = 0.023), and full resolution of toxicities (87% vs 50%, p = 0.008). Skin toxicity was unanimously milder for hPBT compared to nPBT in A&P and ST locations (p = 0.018 and p = 0.025, respectively). No significant differences in QoL were observed in 97% of comparisons for QLQ-C30 scale except for loss of appetite in H&N patients (+33.3 for nPBT and 0 for hPBT, p = 0.02) and role functioning for A&P patients (0 for nPBT vs +16.7 hPBT, p = 0.003). For QLQ-HN35, 97.9% of comparisons did not reveal significant differences, with pain as the only scale varying between the groups (-8.33 vs -25, p = 0.016). Conclusion Hypofractionated proton therapy offers non-inferior early safety and QoL as compared to normofractionated irradiation and warrants further clinical investigation
Is standard breast-conserving therapy (BCT) in elderly breast cancer patients justified? A prospective measurement of acute toxicity according CTC-classification
<p>Abstract</p> <p>Background</p> <p>Breast conserving therapy (BCT) is an accepted treatment for early-stage breast cancer. This study aimed to measure prospectively acute radiation-related toxicity and to create a comprehensive data base for long-term temporal analyses of 3D conformal adjuvant radiotherapy. The specific aspect of age has been neglected by traditional research. Therefore, the impact of age on acute BCT toxicity should be also specifically adressed.</p> <p>Methods</p> <p>Toxicity was measured in 109 patients at initiation (t1), during radiotherapy (t2-t7), and 6 weeks after treatment completion (t8) using a new topographic module. Organ systems were recorded in 15 scales and scored according to symptom intensity (grade 0-5) based on CTC (Common Toxicity Criteria) -classification. Radiotherapy was virtually CT-based planned and applied with 6-MeV-photons. Mean total dose was 60.1 Gy. Patients were stratified by age in 3 Groups: <50, 50-60, and >60 years.</p> <p>Results</p> <p>Registered toxicity was generally low. Mean overall-grade climbed from 0.29-0.40 (t1-t7), and dropped to 0.23 (t8). Univariate analyses revealed slightly higher toxicity in older (> 60 years) versus young patients (< 50 years) in 2 scales only: breast-symmetry (p = 0.033), and arm function (p = 0.007). However, in the scale "appetite" toxicity was higher in younger (< 50 years) versus older (> 60 years) patients (p = 0.039). Toxicity differences in all other scales were not significant. Between older (> 60 years) and midaged patients (50-60 years) no significant differences in toxicity were found. This was also true for the comparison between young (< 50 years) versus midaged patient groups (50-60 years).</p> <p>Conclusion</p> <p>The treatment concept of BCT for breast cancer is generally well tolerated. The toxicity-measurement with the new topographic module is feasible. Not modified standard treatment for BC should be performed in elderly women.</p
Ultrasound-Guided Brachytherapy for Cervical Cancer - A Tool for Quality Improvement in Brachytherapy?
Nowadays, brachytherapy is one of the major components to treat inoperable cervical cancer. Brachytherapy yields a higher dose to the target (cervix) while sparing normal tissues. Developments of brachytherapy stepped forward in the previous decade by image-guided brachytherapy (IGBT) turning brachytherapy from point-based planning to volume-based planning and IGBT improves the treatment quality for cervical cancer. Magnetic resonance imaging (MRI) or computed tomography (CT) is utilized in brachytherapy and showed promising results internationally. However, in a limited-resource area, the implementation of IGABT is difficult due to many causes (manpower, equipment, or budgets). To improve the quality in limited resources, ultrasound is introduced. The utilization of ultrasound in brachytherapy practice is to prevent uterine perforation during application. With present data, measurement by ultrasound showed the correlation to MRI measurement in uterine dimensions. With these aspects, there are many researches using ultrasound to improve the quality of treatment in brachytherapy, for example, to guide contouring on CT or to support brachytherapy planning. The use of ultrasound improves the quality of brachytherapy in comparison to conventional planning and supports the improvement in brachytherapy for cervical cancer