10 research outputs found

    A Comparative Analysis of Clinical Characteristics and Laboratory Findings of COVID-19 between Intensive Care Unit and Non-Intensive Care Unit Pediatric Patients: A Multicenter, Retrospective, Observational Study from Iranian Network for Research in Viral

    Get PDF
    Introduction: To date, little is known about the clinical features of pediatric COVID-19 patients admitted to intensive care units (ICUs). Objective: Herein, we aimed to describe the differences in demographic characteristics, laboratory findings, clinical presentations, and outcomes of Iranian pediatric COVID-19 patients admitted to ICU versus those in non-ICU settings. Methods: This multicenter investigation involved 15 general and pediatrics hospitals and included cases with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection based on positive real-time reverse transcription polymerase chain reaction (RT-PCR) admitted to these centers between March and May 2020, during the initial peak of the COVID-19 pandemic in Iran. Results: Overall, 166 patients were included, 61 (36.7%) of whom required ICU admission. The highest number of admitted cases to ICU were in the age group of 1–5 years old. Malignancy and heart diseases were the most frequent underlying conditions. Dyspnea was the major symptom for ICU-admitted patients. There were significant decreases in PH, HCO3 and base excess, as well as increases in creatinine, creatine phosphokinase (CPK), lactate dehydrogenase (LDH), and potassium levels between ICU-admitted and non-ICU patients. Acute respiratory distress syndrome (ARDS), shock, and acute cardiac injury were the most common features among ICU-admitted patients. The mortality rate in the ICU-admitted patients was substantially higher than non-ICU cases (45.9% vs. 1.9%, respectively; p<0.001). Conclusions: Underlying diseases were the major risk factors for the increased ICU admissions and mortality rates in pediatric COVID-19 patients. There were few paraclinical parameters that could differentiate between pediatrics in terms of prognosis and serious outcomes of COVID-19. Healthcare providers should consider children as a high-risk group, especially those with underlying medical conditions

    Optimization of the pulsed electric field -assisted extraction of functional compounds from Nepeta binaludensis

    Get PDF
    Pulsed electric field (PEF) treatment was used for extracting effective components from Nepeta (Nepeta binaludensis Jamzad). A response surface method was used to investigate the effects of independent process variables (voltage of pulsed electric field (VPEF): 2, 4 and 6 KV/cm and number of pulsed electric field (NPEF): 20, 40 and 60 n) on the yield (Y) and antioxidant characteristics: total phenolic compounds (TPC), 1,1- diphenyl -2- picrylhydrazyl free radical scavenging (DPPHsc), ferric reducing-antioxidant power (FRAP), half  maximal of radical-scavenging activity (IC50) of Nepeta extract (aerial parts). According to Derringer’s desired function approach, the optimal conditions based on both individual and combinations of all process variables were VPEF 6KV/cm and NPEF 60 n. At this optimum condition, the Y, TPC, DPPHSC, FRAP, and IC50 of the extract were found to be 11.36%, 417.85 mg GA/g, 74.8%, 1688.53µmol Fe2+/g, and 0.32 mg/mL, respectively. The experimental values were in a good agreement with the predicted values. Also, the extract at optimal conditions of PEF (PEFopt-x) had a higher quantity of chlorogenic acid, caffeic acid, rutin, para-coumaric acid, rosemarinic acid, Kaempferol, and apigenin compared with solvent extract. The addition of PEFopt-x to the purified soybean oil at the levels of 6% increased oxidative stability index (2.65 h) close to butylated hydroxy toluene (2.78h)

    Efficient synthesis of 9,10-dihydropyrano[2,3-<i>h</i>]chromene-2,8-dione derivatives in ionic liquid and the study of their antioxidant activity

    No full text
    <p>Ionic liquid <i>N</i>,<i>N</i>,<i>N′</i>,<i>N′</i>-tetramethylguanidinium trifluoroacetate (TMGT) has been applied as a green and reusable catalyst for the one-pot synthesis of 10-aryl substituted-9,10-dihydropyrano[2,3-<i>h</i>]chromene-2,8-diones via reaction of various aromatic aldehydes, 5,7-dihydroxycoumarin derivatives and Meldrum’s acid. The reactions were rapid, clean and the products were prepared in good yield. The ionic liquid was stable during the reaction process and reused without significant loss of its activity. The synthesised compounds were evaluated for their antioxidant activity by a 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay.</p> <p>Lasemi et al. ‘Efficient synthesis of 9,10-dihydropyrano[2,3-h]chromene-2,8-dione derivatives in ionic liquid and the study of their antioxidant activity’</p

    Evaluation of the antioxidant and antibacterial properties of ethanol extracts from berries, leaves and stems of <i>Hedera pastuchovii</i> Woron. ex Grossh

    No full text
    <div><p>This study was designed to examine the total phenolic and flavonoid contents, radical scavenging and antibacterial activity of the ethanolic extracts from leaves, berries and stems of <i>Hedera pastuchovii</i> Woron. ex Grossh. The berry extract, which contained the highest phenolic and flavonoid compounds, showed an appreciable DPPH<sup>√</sup> scavenging ability in comparison with leaf and stem extracts. The various extracts exhibited moderate to good activity against both Gram-negative and Gram-positive bacteria, and the effectiveness of leaf extract was higher for all tested bacteria.</p></div

    Construction of metronidazole capped in gold nanoparticles against Helicobacter pylori: antimicrobial activity improvement

    Get PDF
    Introduction: Helicobacter pylori is considered a major agent causing gastritis and peptic ulcer disease. Unfortunately, the occurrence of increasing drug resistance to this bacterium would result in some difficulties in its treatment. Therefore, the application of nanotechnology has been suggested to resolve such problems. Nanoparticles usage in medical research has been expanded in recent years. Among nanometals, gold nanoparticles have exclusive features that can be used in such applications. Using nanotechnology in medical science could help mankind to solve this problem in the future.Aim: Our aim in this research was to investigate the antimicrobial effect of gold nanoparticles on H. pylori strains.Materials and methods: Gold nanoparticles were synthesized by the Turkevich method. Then, their size and dispersion were investigated using spectrophotometry, DLS, and TEM microscopy. Subsequently, the combination of metronidazole and gold nanoparticles was obtained by mixing method, and then the anti-helicobacter effects of the two were evaluated according to CLSI.Results: The highest size of gold nanoparticles was between 12 and 9 nm, and the maximum absorbance was 522 nm; however, in conjugated state, the maximum absorbance was 540 nm, which indicated the accumulation of drug-conjugated nanoparticles in the conjugate state. Some changes indicated the binding of metronidazole to gold nanoparticles. Antimicrobial testing of gold nanoparticles and metronidazole did not affect the Helicobacter pylori. Therefore, the combination of gold nanoparticles and metronidazole had a 17-mm growth inhibition zone.Conclusions: The anti-helicobacter effects of metronidazole significantly increased in conjugation with gold nanoparticles
    corecore