3,270 research outputs found

    From Dirac semimetals to topological phases in three dimensions: a coupled wire construction

    Full text link
    Weyl and Dirac (semi)metals in three dimensions have robust gapless electronic band structures. Their massless single-body energy spectra are protected by symmetries such as lattice translation, (screw) rotation and time reversal. In this manuscript, we discuss many-body interactions in these systems. We focus on strong interactions that preserve symmetries and are outside the single-body mean-field regime. By mapping a Dirac (semi)metal to a model based on a three dimensional array of coupled Dirac wires, we show (1) the Dirac (semi)metal can acquire a many-body excitation energy gap without breaking the relevant symmetries, and (2) interaction can enable an anomalous Weyl (semi)metallic phase that is otherwise forbidden by symmetries in the single-body setting and can only be present holographically on the boundary of a four dimensional weak topological insulator. Both of these topological states support fractional gapped (gapless) bulk (resp. boundary) quasiparticle excitations.Comment: 29 pages, 19 figures. This version has an expanded 'Summary of Results' and 'Conclusion and Discussion' section to make it more accessible to a broader audienc

    An Extended Huckel Theory based Atomistic Model for Graphene Nanoelectronics

    Full text link
    An atomistic model based on the spin-restricted extended Huckel theory (EHT) is presented for simulating electronic structure and I-V characteristics of graphene devices. The model is applied to zigzag and armchair graphene nano-ribbons (GNR) with and without hydrogen passivation, as well as for bilayer graphene. Further calculations are presented for electric fields in the nano-ribbon width direction and in the bilayer direction to show electronic structure modification. Finally, the EHT Hamiltonian and NEGF (Nonequilibrium Green's function) formalism are used for a paramagnetic zigzag GNR to show 2e2/h quantum conductance.Comment: 5 pages, 8 figure

    Thermal history of the early Miocene Waitemata Basin and adjacent Waipapa Group, North Island, New Zealand

    Get PDF
    Apatite fission track (AFT) and vitrinite reflectance (VR) data for early Miocene outcrops from the Waitemata Basin reveal that the basin sequence was subjected to shallow burial before denudation. AFT results suggest that the total sediment thickness within the basin was <=1 km and maximum paleotemperatures during burial never exceeded c. 60deg.C. Statistical analyses of the detrital AFT ages distinguish four dominant sources of sediment supply: contemporaneous volcanism; metagreywacke rocks of the Waipapa Group; the Northland Allochthon; and an unidentified source south of the basin. The apatite and zircon fission track results from the Waipapa Group rocks (Gondwana Terrane) adjacent to the basin suggest two discrete phases of accelerated cooling: the first during the early Cretaceous (c. 117 Ma) and the second during the mid Cretaceous (c. 84 Ma). These events probably reflect key stages in the tectonic development of the New Zealand microcontinent during the Cretaceous period, the earlier event being related to the climax of compressional deformation (Rangitata Orogeny) and the latter to extensional tectonism associated with the opening of the Tasman Sea. Waipapa Group rocks now exposed at the surface cooled from maximum paleotemperatures of c. 250deg.C at an estimated rate of c. 180-36deg.C/m.y., involving substantial denudation

    Strain and field modulation in bilayer graphene band structure

    Full text link
    Using an external electric field, one can modulate the bandgap of Bernal stacked bilayer graphene by breaking A-~B symmetry. We analyze strain effects on the bilayer graphene using the extended Huckel theory and find that reduced interlayer distance results in higher bandgap modulation, as expected. Furthermore, above about 2.5 angstrom interlayer distance, the bandgap is direct, follows a convex relation to electric field and saturates to a value determined by the interlayer distance. However, below about 2.5 angstrom, the bandgap is indirect, the trend becomes concave and a threshold electric field is observed, which also depends on the stacking distance.Comment: 3 pages, 5 figures - v1 and v2 are the same, uploaded twice - v3, some typos fixed and a reference adde
    • ā€¦
    corecore