17 research outputs found

    SERAF, a Novel Regulator of Store Operated Calcium Entry

    Get PDF

    An IQSEC2 Mutation Associated With Intellectual Disability and Autism Results in Decreased Surface AMPA Receptors

    Get PDF
    We have recently described an A350V mutation in IQSEC2 associated with intellectual disability, autism and epilepsy. We sought to understand the molecular pathophysiology of this mutation with the goal of developing targets for drug intervention. We demonstrate here that the A350V mutation results in interference with the binding of apocalmodulin to the IQ domain of IQSEC2. We further demonstrate that this mutation results in constitutive activation of the guanine nucleotide exchange factor (GEF) activity of IQSEC2 resulting in increased production of the active form of Arf6. In a CRISPR generated mouse model of the A350V IQSEC2 mutation, we demonstrate that the surface expression of GluA2 AMPA receptors in mouse hippocampal tissue was significantly reduced in A350V IQSEC2 mutant mice compared to wild type IQSEC2 mice and that there is a significant reduction in basal synaptic transmission in the hippocampus of A350V IQSEC2 mice compared to wild type IQSEC2 mice. Finally, the A350V IQSEC2 mice demonstrated increased activity, abnormal social behavior and learning as compared to wild type IQSEC2 mice. These findings suggest a model of how the A350V mutation in IQSEC2 may mediate disease with implications for targets for drug therapy. These studies provide a paradigm for a personalized approach to precision therapy for a disease that heretofore has no therapy

    Cooperative Binding of Stromal Interaction Molecule 1 (STIM1) to the N and C Termini of Calcium Release-activated Calcium Modulator 1 (Orai1)*

    No full text
    Calcium flux through store-operated calcium entry is a central regulator of intracellular calcium signaling. The two key components of the store-operated calcium release-activated calcium channel are the Ca(2+)-sensing protein stromal interaction molecule 1 (STIM1) and the channel pore-forming protein Orai1. During store-operated calcium entry activation, calcium depletion from the endoplasmic reticulum triggers a series of conformational changes in STIM1 that unmask a minimal Orai1-activating domain (CRAC activation region (CAD)). To gate Orai1 channels, the exposed STIM1-activating domain binds to two sites in Orai1, one in the N terminus and one in the C terminus. Whether the two sites operate as distinct binding domains or cooperate in CAD binding is unknown. In this study, we show that the N and C-terminal domains of Orai1 synergistically contribute to the interaction with STIM1 and couple STIM1 binding with channel gating and modulation of ion selectivity

    Sequential Steps of CRAC Channel Activation

    No full text
    Interaction between the endoplasmic reticulum protein STIM1 and the plasma membrane channel ORAI1 generates calcium signals that are central for diverse cellular functions. How STIM1 binds and activates ORAI1 remains poorly understood. Using electrophysiological, optical, and biochemical techniques, we examined the effects of mutations in the STIM1-ORAI1 activating region (SOAR) of STIM1. We find that SOAR mutants that are deficient in binding to resting ORAI1 channels are able to bind to and boost activation of partially activated ORAI1 channels. We further show that the STIM1 binding regions on ORAI1 undergo structural rearrangement during channel activation. The results suggest that activation of ORAI1 by SOAR occurs in multiple steps. In the first step, SOAR binds to ORAI1, partially activates the channel, and induces a rearrangement in the SOAR-binding site of ORAI1. That rearrangement of ORAI1 then permits sequential steps of SOAR binding, via distinct molecular interactions, to fully activate the channel

    Stoichiometry and specific assembly of Best ion channels

    No full text
    Human Bestrophin 1 (hBest1) is a calcium-activated chloride channel that regulates neuronal excitability, synaptic activity, and retinal homeostasis. Mutations in hBest1 cause the autosomal-dominant Best macular dystrophy (BMD). Because hBest1 mutations cause BMD, but a knockout does not, we wondered if hBest1 mutants exert a dominant negative effect through interaction with other calcium-activated chloride channels, such as hBest2, 3, or 4, or transmembrane member 16A (TMEM16A), a member of another channel family. The subunit architecture of Best channels is debated, and their ability to form heteromeric channel assemblies is unclear. Using single-molecule subunit analysis, we find that each of hBest1, 2, 3, and 4 forms a homotetrameric channel. Despite considerable conservation among hBests, hBest1 has little or no interaction with other hBests or mTMEM16A. We identify the domain responsible for assembly specificity. This domain also plays a role in channel function. Our results indicate that Best channels preferentially self-assemble into homotetramers
    corecore