316 research outputs found

    Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2

    Get PDF
    AbstractProstaglandin endoperoxide synthase 2, also referred to as cyclooxygenase 2 (COX-2), is a key enzyme in the conversion of arachidonic acid to prostaglandins and other eicosanoids. Rat intestinal epithelial (RIE) cells were permanently transfected with a COX-2 expression vector oriented in the sense (RIE-S) or antisense (RIE-AS) direction. The RIE-S cells expressed elevated COX-2 protein levels and demonstrated increased adhesion to extracellular matrix (ECM) proteins. E-cadherin was undetectable in RIE-S cells, but was elevated in parental RIE (RIE-P) and RIE-AS cells. RIE-S cells were resistant to butyrate-induced apoptosis, had elevated BCL2 protein expression, and reduced transforming growth factor β2 receptor levels. The phenotypic changes involving both increased adhesion to ECM and inhibition of apoptosis were reversed by sulindac sulfide (a COX inhibitor). These studies demonstrate that overexpression of COX-2 leads to phenotypic changes in intestinal epithelial cells that could enhance their tumorigenic potential

    Peroxisome Proliferator-Activated Receptors and Progression of Colorectal Cancer

    Get PDF
    The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily. These receptors are also ligand-dependent transcription factors responsible for the regulation of cellular events that range from glucose and lipid homeostases to cell differentiation and apoptosis. The importance of these receptors in lipid homeostasis and energy balance is well established. In addition to these metabolic and anti-inflammatory properties, emerging evidence indicates that PPARs can function as either tumor suppressors or accelerators, suggesting that these receptors are potential candidates as drug targets for cancer prevention and treatment. However, conflicting results have emerged regarding the role of PPARs on colon carcinogenesis. Therefore, further investigation is warranted prior to considering modulation of PPARs as an efficacious therapy for colorectal cancer chemoprevention and treatment

    Prostaglandins in Cancer Cell Adhesion, Migration, and Invasion

    Get PDF
    Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2), which binds to and activates G-protein-coupled prostaglandin E1–4 receptors (EP1–4). Selectively targeting the COX-2/mPGES-1/PGE2/EP1–4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM). Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK) and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1–4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy

    CXCR2-Expressing Myeloid-Derived Suppressor Cells Are Essential to Promote Colitis-Associated Tumorigenesis

    Get PDF
    SummaryA large body of evidence indicates that chronic inflammation is one of several key risk factors for cancer initiation, progression, and metastasis. However, the underlying mechanisms responsible for the contribution of inflammation and inflammatory mediators to cancer remain elusive. Here, we present genetic evidence that loss of CXCR2 dramatically suppresses chronic colonic inflammation and colitis-associated tumorigenesis through inhibiting infiltration of myeloid-derived suppressor cells (MDSCs) into colonic mucosa and tumors in a mouse model of colitis-associated cancer. CXCR2 ligands were elevated in inflamed colonic mucosa and tumors and induced MDSC chemotaxis. Adoptive transfer of wild-type MDSCs into Cxcr2−/− mice restored AOM/DSS-induced tumor progression. MDSCs accelerated tumor growth by inhibiting CD8+ T cell cytotoxic activity

    Cyclooxygenase Regulates Angiogenesis Induced by Colon Cancer Cells

    Get PDF
    AbstractTo explore the role of cyclooxygenase (COX) in endothelial cell migration and angiogenesis, we have used two in vitro model systems involving coculture of endothelial cells with colon carcinoma cells. COX-2-overexpressing cells produce prostaglandins, proangiogenic factors, and stimulate both endothelial migration and tube formation, while control cells have little activity. The effect is inhibited by antibodies to combinations of angiogenic factors, by NS-398 (a selective COX-2 inhibitor), and by aspirin. NS-398 does not inhibit production of angiogenic factors or angiogenesis induced by COX-2-negative cells. Treatment of endothelial cells with aspirin or a COX-1 antisense oligonucleotide inhibits COX-1 activity/expression and suppresses tube formation. Cyclooxygenase regulates colon carcinoma-induced angiogenesis by two mechanisms: COX-2 can modulate production of angiogenic factors by colon cancer cells, while COX-1 regulates angiogenesis in endothelial cells

    Cyclooxygenase in biology and disease

    Full text link
    Cyclooxygenase (COX), the key enzyme required for the conversion of arachidonic acid to prostaglandins was first identified over 20 years ago. Drugs, like aspirin, that inhibit cyclooxygenase activity have been available to the public for about 100 years. In the past decade, however, more progress has been made in understanding the role of cyclooxygenase enzymes in biology and disease than at any other time in history. Two cyclooxygenase isoforms have been identified and are referred to as COX‐1 and COX‐2. Under many circumstances the COX‐1 enzyme is produced constitutively (i.e., gastric mucosa) whereas COX‐2 is inducible (i.e., sites of inflammation). Here, we summarize the current understanding of the role of cyclooxygenase‐1 and ‐2 in different physiological situations and disease processes ranging from inflammation to cancer. We have attempted to include all of the most relevant material in the field, but due to the rapid progress in this area of research we apologize that certain recent findings may have been left out.—DuBois, R. N., Abramson, S. B., Crofford, L., Gupta, R. A., Simon, L. S., van de Putte, L. B. A., Lipsky, P. E. Cyclooxygenase in biology and disease. FASEB J. 12, 1063–1073 (1998)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154527/1/fsb2fasebj12121063.pd

    CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer

    Get PDF
    Chronic inflammation is a well-known risk factor for cancer. Proinflammatory mediators such as prostaglandin E2 (PGE2) promote colorectal tumor growth by stimulating angiogenesis, cell invasion, and cell growth, and inhibiting apoptosis. Molecules that regulate tumor-associated angiogenesis provide promising therapeutic targets for treatment of colorectal cancer (CRC) as indicated by the recent development of the novel anti-angiogenic agent bevacizumab (Avastin). However, use of this drug only prolongs survival by several months, highlighting the importance of finding more effective treatment regimens. We report here that PGE2 induces expression of CXCL1 (growth-regulated oncogene Îą), a pro-angiogenic chemokine, in human CRC cells. More importantly, CXCL1 released from carcinoma cells induces microvascular endothelial cell migration and tube formation in vitro. Furthermore, PGE2 promotes tumor growth in vivo by induction of CXCL1 expression, which results in increased tumor microvessel formation. These results have potential clinical significance because we found that CXCL1 expression correlates with PGE2 levels in human CRCs. Collectively, our findings show for the first time that CXCL1 is regulated by PGE2 and indicate that CXCL1 inhibitors should be evaluated further as potential anti-angiogenic agents for treatment of CRC

    Cyclopentenone Isoprostanes Inhibit the Inflammatory Response in Macrophages

    Get PDF
    Although both inflammation and oxidative stress contribute to the pathogenesis of many disease states, the interaction between the two is poorly understood. Cyclopentenone isoprostanes (IsoPs), highly reactive structural isomers of the bioactive cyclopentenone prostaglandins PGA2 and PGJ2, are formed non-enzymatically as products of oxidative stress in vivo. We have, for the first time, examined the effects of synthetic 15-A2- and 15-J2-IsoPs, two groups of endogenous cyclopentenone IsoPs, on the inflammatory response in RAW264.7 and primary murine macrophages. Cyclopentenone IsoPs potently inhibited lipopolysaccharide-stimulated IkappaB alpha degradation and subsequent NF-kappaB nuclear translocation and transcriptional activity. Expression of inducible nitric-oxide synthase and cyclooxygenase-2 were also inhibited by cyclopentenone IsoPs as was nitrite and prostaglandin production (IC50 approximately 360 and 210 nM, respectively). 15-J2-IsoPs potently activated peroxisome proliferator-activated receptor gamma (PPARgamma) nuclear receptors, whereas 15-A2-IsoP did not, although the anti-inflammatory effects of both molecules were PPARgamma-independent. Interestingly 15-A2-IsoPs induced oxidative stress in RAW cells that was blocked by the antioxidant 4-hydroxy-TEMPO (TEMPOL) or the mitochondrial uncoupler carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone. TEMPOL also abrogated the inhibitory effect of 15-A2-IsoPs on lipopolysaccharide-induced NF-kappaB activation, inducible nitricoxide synthase expression, and nitrite production, suggesting that 15-A2-IsoPs inhibit the NF-kappaB pathway at least partially via a redox-dependent mechanism. 15-J2-IsoP, but not 15-A2-IsoP, also potently induced RAW cell apoptosis again via a PPAR gamma-independent mechanism. These findings suggest that cyclopentenone IsoPs may serve as negative feedback regulators of inflammation and have important implications for defining the role of oxidative stress in the inflammatory response
    • …
    corecore