8 research outputs found

    Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution

    Get PDF
    Metallic transition metal dichalcogenides (TMDs)1???8 are good catalysts for the hydrogen evolution reaction (HER). The overpotential and Tafel slope values of metallic phases and edges9 of two-dimensional (2D) TMDs approach those of Pt. However, the overall current density of 2D TMD catalysts remains orders of magnitude lower (~10???100 mA cm???2) than industrial Pt and Ir electrolysers (>1,000 mA cm???2)10,11. Here, we report the synthesis of the metallic 2H phase of niobium disulfide with additional niobium (2H Nb1+xS2, where x is ~0.35)12 as a HER catalyst with current densities of >5,000 mA cm???2 at ~420 mV versus a reversible hydrogen electrode. We find the exchange current density at 0 V for 2H Nb1.35S2 to be ~0.8 mA cm???2, corresponding to a turnover frequency of ~0.2 s???1. We demonstrate an electrolyser based on a 2H Nb1+ xS2 cathode that can generate current densities of 1,000 mA cm???2. Our theoretical results reveal that 2H Nb1+ xS2 with Nb-terminated surface has free energy for hydrogen adsorption that is close to thermoneutral, facilitating HER. Therefore, 2H Nb1+ xS2 could be a viable catalyst for practical electrolysers

    High-quality graphene via microwave reduction of solution-exfoliated graphene oxide

    No full text
    Efficient exfoliation of graphite in solutions to obtain high-quality graphene flakes is desirable for printable electronics, catalysis, energy storage, and composites. Graphite oxide with large lateral dimensions has an exfoliation yield of ~100% but it has not been possible to completely remove the oxygen functional groups so that the reduced form of graphene oxide (GO) remains a highly disordered material. Here, we report a simple, rapid method to reduce GO (rGO) into pristine graphene using 1- to 2-second pulses of microwaves. The excellent structural properties are translated into mobility values of > 1000 centimeter squared per volt per second in field effect transistors (FETs) with MW-rGO as the channel material and in exceptionally high activity for MW-rGO catalyst support toward oxygen evolution reaction (OER).clos

    Single Atomic Vacancy Catalysis

    No full text
    International audienceSingle atom catalysts provide exceptional activity. However, measuring the intrinsic catalytic activity of a single atom in real electrochemical environments is challenging. Here, we report the activity of a single vacancy for electrocatalytically evolving hydrogen in two-dimensional (2D) MoS2. Surprisingly, we find that the catalytic activity per vacancy is not constant but increases with its concentration, reaching a sudden peak in activity at 5.7 x 10(14) cm(-2) where the intrinsic turn over frequency and Tafel slope of a single atomic vacancy was found to be similar to 5 s(-1) and 44 mV/dec, respectively. At this vacancy concentration, we also find a local strain of similar to 3% and a semiconductor to metal transition in 2D MoS2. Our results suggest that, along with increasing the number of active sites, engineering the local strain and electrical conductivity of catalysts is essential in increasing their activity

    Submarine Groundwater Discharge Releases CO2 to a Coral Reef

    No full text
    Submarine groundwater discharge (SGD) flows into coral reefs. In volcanically active areas; the incoming groundwater is typically CO2-rich which can alter the carbon balance and views on how coral reefs function at prevailing high CO2. We quantified dynamic hydrothermal SGD and CO2 fluxes to a Philippine coral reef over a spring-neap tidal cycle. SGD rates; with mean of 35 cm d−1 and 5−95% range of 0−147.8 cm d−1 . The groundwater-CO2 fluxes (266 mmol m d−1; range: 0−1111 mmol m2 d−1) were up to ∼300-fold larger than evasion of CO2 to the atmosphere. The reef seawater pCO2 (493 μatm; range: 421−680 μatm) remained above atmospheric values and spanned the upper end of the range of atmospheric levels (400−500 μatm) expected for the next century. Because of the hydrothermal SGD; the reef has prevailing above-atmospheric CO2 and is a source to the atmosphere and nearby waters

    Solution-Processed MoS2/Organolead Trihalide Perovskite Photodetectors

    No full text
    Integration of organic/inorganic hybridperovskites with metallic or semiconducting phases of 2D MoS2 nanosheets via solution processing is demonstrated. The results show that the collection of charge carriers is strongly dependent on the electronic properties of the 2D MoS2 with metallic MoS2 showing high responsivity and the semiconducting phase exhibiting high on/off ratios

    Submarine Groundwater and Vent Discharge in a Volcanic Area Associated With Coastal Acidification

    No full text
    We investigated submarine groundwater discharge (SGD) in a volcanic coastal area that hosts the world\u27s most biodiverse reefs. Measurements of 222Rn activity in coastal seawater, a tracer for groundwater, indicated prevalent SGD. In areas where seawater 222Rn activity was generally higher, we discovered hydrothermal springs emitting acidic waters (pH ~5.4–6.0) and venting magmatic CO2 that brought local pCO2 levels up to 95,000 ppm. The collection of vents raised CO2 and lowered pH over 1–2 km of coastline. The hydrogen and oxygen isotope compositions of water and chloride concentration revealed that the springs discharge recirculated seawater mixed variably with terrestrial groundwater. Shallower springs and pore water have a higher proportion of terrestrial groundwater than deeper springs, which emit mostly recirculated seawater. This suggests that different SGD mechanisms are present. The SGD could be contributing to the evolution and function of the biodiverse ecosystem, but it also represents myriad pathways for contamination
    corecore