44 research outputs found

    Placental microRNA methylome signatures may serve as biomarkers and therapeutic targets for prenatally opioid-exposed infants with neonatal opioid withdrawal syndrome

    Get PDF
    Introduction: The neonate exposed to opioids in utero faces a constellation of withdrawal symptoms postpartum commonly called neonatal opioid withdrawal syndrome (NOWS). The incidence of NOWS has increased in recent years due to the opioid epidemic. MicroRNAs (miRNAs) are small non-coding RNA molecules that play a crucial role in gene regulation. Epigenetic variations in microRNAs (miRNAs) and their impact on addiction-related processes is a rapidly evolving area of research.Methods: The Illumina Infinium Methylation EPIC BeadChip was used to analyze DNA methylation levels of miRNA-encoding genes in 96 human placental tissues to identify miRNA gene methylation profiles as-sociated with NOWS: 32 from mothers whose prenatally opioid-exposed infants required pharmacologic management for NOWS, 32 from mothers whose prenatally opioid-exposed infants did not require treat-ment for NOWS, and 32 unexposed controls.Results: The study identified 46 significantly differentially methylated (FDR p-value ≤ 0.05) CpGs associated with 47 unique miRNAs, with a receiver operating characteristic (ROC) area under the curve (AUC) ≥0.75 including 28 hypomethylated and 18 hypermethylated CpGs as potentially associated with NOWS. These dysregulated microRNA methylation patterns may be a contributing factor to NOWS pathogenesis.Conclusion: This is the first study to analyze miRNA methylation profiles in NOWS infants and illustrates the unique role miRNAs might have in diagnosing and treating the disease. Furthermore, these data may provide a step toward feasible precision medicine for NOWS babies as well

    Precision oncology: Artificial intelligence, circulating cell‐free DNA, and the minimally invasive detection of pancreatic cancer—A pilot study

    No full text
    Abstract Background Pancreatic cancer (PC) is among the most lethal cancers. The lack of effective tools for early detection results in late tumor detection and, consequently, high mortality rate. Precision oncology aims to develop targeted individual treatments based on advanced computational approaches of omics data. Biomarkers, such as global alteration of cytosine (CpG) methylation, can be pivotal for these objectives. In this study, we performed DNA methylation profiling of pancreatic cancer patients using circulating cell‐free DNA (cfDNA) and artificial intelligence (AI) including Deep Learning (DL) for minimally invasive detection to elucidate the epigenetic pathogenesis of PC. Methods The Illumina Infinium HD Assay was used for genome‐wide DNA methylation profiling of cfDNA in treatment‐naïve patients. Six AI algorithms were used to determine PC detection accuracy based on cytosine (CpG) methylation markers. Additional strategies for minimizing overfitting were employed. The molecular pathogenesis was interrogated using enrichment analysis. Results In total, we identified 4556 significantly differentially methylated CpGs (q‐value < 0.05; Bonferroni correction) in PC versus controls. Highly accurate PC detection was achieved with all 6 AI platforms (Area under the receiver operator characteristics curve [0.90–1.00]). For example, DL achieved AUC (95% CI): 1.00 (0.95–1.00), with a sensitivity and specificity of 100%. A separate modeling approach based on logistic regression‐based yielded an AUC (95% CI) 1.0 (1.0–1.0) with a sensitivity and specificity of 100% for PC detection. The top four biological pathways that were epigenetically altered in PC and are known to be linked with cancer are discussed. Conclusion Using a minimally invasive approach, AI, and epigenetic analysis of circulating cfDNA, high predictive accuracy for PC was achieved. From a clinical perspective, our findings suggest that that early detection leading to improved overall survival may be achievable in the future

    Alzheimer&rsquo;s Precision Neurology: Epigenetics of Cytochrome P450 Genes in Circulating Cell-Free DNA for Disease Prediction and Mechanism

    No full text
    Precision neurology combines high-throughput technologies and statistical modeling to identify novel disease pathways and predictive biomarkers in Alzheimer&rsquo;s disease (AD). Brain cytochrome P450 (CYP) genes are major regulators of cholesterol, sex hormone, and xenobiotic metabolism, and they could play important roles in neurodegenerative disorders. Increasing evidence suggests that epigenetic factors contribute to AD development. We evaluated cytosine (&lsquo;CpG&rsquo;)-based DNA methylation changes in AD using circulating cell-free DNA (cfDNA), to which neuronal cells are known to contribute. We investigated CYP-based mechanisms for AD pathogenesis and epigenetic biomarkers for disease detection. We performed a case&ndash;control study using 25 patients with AD and 23 cognitively healthy controls using the cfDNA of CYP genes. We performed a logistic regression analysis using the MetaboAnalyst software computer program and a molecular pathway analysis based on epigenetically altered CYP genes using the Cytoscape program. We identified 130 significantly (false discovery rate correction q-value &lt; 0.05) differentially methylated CpG sites within the CYP genes. The top two differentially methylated genes identified were CYP51A1 and CYP2S1. The significant molecular pathways that were perturbed in AD cfDNA were (i) androgen and estrogen biosynthesis and metabolism, (ii) C21 steroid hormone biosynthesis and metabolism, and (iii) arachidonic acid metabolism. Existing evidence suggests a potential role of each of these biochemical pathways in AD pathogenesis. Next, we randomly divided the study group into discovery and validation sub-sets, each consisting of patients with AD and control patients. Regression models for AD prediction based on CYP CpG methylation markers were developed in the discovery or training group and tested in the independent validation group. The CYP biomarkers achieved a high predictive accuracy. After a 10-fold cross-validation, the combination of cg17852385/cg23101118 + cg14355428/cg22536554 achieved an AUC (95% CI) of 0.928 (0.787~1.00), with 100% sensitivity and 92.3% specificity for AD detection in the discovery group. The performance remained high in the independent validation or test group, achieving an AUC (95% CI) of 0.942 (0.905~0.979) with a 90% sensitivity and specificity. Our findings suggest that the epigenetic modification of CYP genes may play an important role in AD pathogenesis and that circulating CYP-based cfDNA biomarkers have the potential to accurately and non-invasively detect AD

    Deep Learning/Artificial Intelligence and Blood-Based DNA Epigenomic Prediction of Cerebral Palsy

    No full text
    The etiology of cerebral palsy (CP) is complex and remains inadequately understood. Early detection of CP is an important clinical objective as this improves long term outcomes. We performed genome-wide DNA methylation analysis to identify epigenomic predictors of CP in newborns and to investigate disease pathogenesis. Methylation analysis of newborn blood DNA using an Illumina HumanMethylation450K array was performed in 23 CP cases and 21 unaffected controls. There were 230 significantly differentially-methylated CpG loci in 258 genes. Each locus had at least 2.0-fold change in methylation in CP versus controls with a FDR p-value &#8804; 0.05. Methylation level for each CpG locus had an area under the receiver operating curve (AUC) &#8805; 0.75 for CP detection. Using Artificial Intelligence (AI) platforms/Machine Learning (ML) analysis, CpG methylation levels in a combination of 230 significantly differentially-methylated CpG loci in 258 genes had a 95% sensitivity and 94.4% specificity for newborn prediction of CP. Using pathway analysis, multiple canonical pathways plausibly linked to neuronal function were over-represented. Altered biological processes and functions included: neuromotor damage, malformation of major brain structures, brain growth, neuroprotection, neuronal development and de-differentiation, and cranial sensory neuron development. In conclusion, blood leucocyte epigenetic changes analyzed using AI/ML techniques appeared to accurately predict CP and provided plausible mechanistic information on CP pathogenesis
    corecore