
Metabolic signatures of Huntington's disease (HD): 1H NMR analysis
of the polar metabolome in post mortem human brain

Graham, S. F., Kumar, P. K., Bjorndahl, T., Han, B., Yilmaz, A., Sherman, E., ... Green, B. D. (2016). Metabolic
signatures of Huntington's disease (HD): 1H NMR analysis of the polar metabolome in post mortem human
brain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 1862(9), 1675-1684. DOI:
10.1016/j.bbadis.2016.06.007

Published in:
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-
nc-nd/4.0/ which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Nov. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/74405241?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/metabolic-signatures-of-huntingtons-disease-hd-1h-nmr-analysis-of-the-polar-metabolome-in-post-mortem-human-brain(9b8de6a6-1f0d-4cf1-91f8-291701e4c047).html


Graham et al 
03/04/2016 

1 
 

Metabolic signatures of Huntington’s disease (HD): 1H NMR 
analysis of the polar metabolome in post mortem human brain.  

 

Stewart F. Graham1*, Praveen K. Kumar1, Trent Bjorndahl2, BeomSoo Han2, Ali Yilmaz1, Eric 

Sherman3, Ray O. Bahado-Singh1, David Wishart2, David Mann4 and Brian D. Green5. 

 

1. Beaumont Research Institute, Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 

48073. 

2. Departments of Biological and Computing Sciences, University of Alberta, Edmonton, 

AB Canada 

3. University of Michigan, Ann Arbour MI.  

4. Institute of Brain Behavior and Mental Health, University of Manchester, UK 

5. Advanced Asset Technology Centre, Institute for Global Food Security, Queen’s 

University Belfast, Stranmillis Road, Belfast, BT9 5AG, UK.  

 

*Corresponding Author 

Tel: +1 248-551-2038; Fax: +1 248-551-2947; e-mail: stewart.graham@beaumont.edu 

 

Abbreviations: 1H NMR- Proton nuclear magnetic resonance; AD – Alzheimer’s disease; AUC 
– area under the curve; AUROC – area under the receiver operating curve; BBB – blood brain 
barrier; BCAA - branched-chain amino acid; CNS - central nervous system; CSF – cerebral 
spinal fluid; DSS - Sodium 2,2-dimethyl-2-silapentane-5-sulfonate; FDR – false discovery rate; 
fMRI – functional magnetic resonance imaging; GC-Tof-MS – gas chromatography time of 
flight mass spectrometry;  HD – Huntington’s disease; IGF-1 – insulin like growth factor; MRI - 
magnetic resonance imaging; MAS-NMR – magic angle spinning NMR; MRS - magnetic 
resonance spectroscopy; ROC – Receiver operating characteristic.    

mailto:stewart.graham@beaumont.org


Graham et al 
03/04/2016 

2 
 

Abstract 

Huntington’s disease (HD) is an autosomal neurodegenerative disorder affecting approximately 

5-10 persons per 100,000 worldwide.  The pathophysiology of HD is not fully understood but the 

age of onset is known to be highly dependent on the number of CAG triplet repeats in the 

huntingtin gene.  Using 1H NMR spectroscopy this study biochemically profiled 39 brain 

metabolites in post-mortem striatum (n=14) and frontal lobe (n=14) from HD sufferers and 

controls (n=28). Striatum metabolites were more perturbed with 15 significantly affected in HD 

cases, compared with only 4 in frontal lobe (P<0.05; q<0.3). The metabolite which changed most 

overall was urea which decreased 3.25-fold in striatum (P<0.01).  Four metabolites were 

consistently affected in both brain regions. These included the neurotransmitter precursors 

tyrosine and L-phenylalanine which were significantly depleted by 1.55-1.58-fold and 1.48-1.54-

fold in striatum and frontal lobe, respectively (P=0.02-0.03). They also included L-leucine which 

was reduced 1.54-1.69-fold (P=0.04-0.09) and myo-inositol which was increased 1.26-1.37-fold 

(P<0.01). Logistic regression analyses performed with MetaboAnalyst demonstrated that data 

obtained from striatum produced models which were profoundly more sensitive and specific than 

those produced from frontal lobe.  The brain metabolite changes uncovered in this first 1H NMR 

investigation of human HD offer new insights into the disease pathophysiology. Further 

investigations of striatal metabolite disturbances are clearly warranted.  

Keywords: Huntington’s disease; metabolomics; 1H NMR; brain; metabolites.  
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Introduction  

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by the 

extension of a CAG repeat at exon 1 of chromosome 4 (4p63) and is clinically characterized by 

chorea and dystonia, cognitive decline and behavioural changes 1-6.  It affects 30,000 US citizens 

(1 in every 10,000) and it is estimated that an additional 150,000-200,000 are at greater risk 

because they have at least one parent with HD 7.  The appearance of symptoms is inversely 

correlated to the number of CAG repeats, which is also an influential factor in determining the 

age of HD onset (it is responsible for ~50-70% of the variance) 8. The unaffected range is 

(CAG)6-35 repeats, alleles of (CAG)>40 are considered fully penetrant and these individuals carry 

a 100 % lifetime risk of developing HD and CAG repeat size with alleles of (CAG)>60 causes 

juvenile onset.  Although HD can present itself at any age, the age of onset is typically 40-45 

years with death typically occurring 15-20 years after the initial manifestation 3,9-11.  Currently 

there is no neuroprotective therapy 3 or ultimate “cure” for this debilitating neurodegenerative 

disease 5,8.  

There are major knowledge gaps regarding the underlying biomolecular mechanisms of HD 

2,11. However, there is some evidence that mechanisms contributing to HD pathogenesis include: 

polyglutamine aggregation and misfolding 12, oxidative stress and mitochondrial dysfunction 9, 

misregulation of energy expenditure 10, transcriptional deregulation 13,14, excitotoxicity 15,16 and 

dopamine toxicity 17,18.  Despite research advances in the last two decades there has been no 

meaningful progress in medical treatments for HD.  Few drugs are available for HD treatment 

and these offer only symptomatic relief (of chorea only) 2.  The most promising research to date 

has been with co-enzyme Q10 (currently in Phase 3 clinical trial (n=608 participants); 2Care, 

The Huntington Study Group) which acts in part to enhance mitochondrial anti-oxidative and 
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free radical scavenging mechanisms 8. The aim would be to target new treatments to pre-

manifest patients as the discovery that changes due to HD happen many years prior to 

diagnosable onset.  Significant technological advances now make it possible to measure, screen 

and identify thousands of potential biomarkers in biosamples.  There is an unprecedented 

opportunity to identify reliable “state” biomarkers of pre-manifest HD progression that can be 

used as outcome measures in preventative clinical trials. 

 Most biomarker research in HD has concentrated on identifying clinical and 

neuroimaging biomarkers of disease.  Clinical biomarkers are standardised clinical tests and 

rating scales that measure the progression of various characteristics of the HD phenotype, such 

as cognition and motor deterioration 3. Data from the full PREDICT-HD study reported that a 

standardised cognitive tasks (n=51) demonstrate psychomotor processing, emotion recognition 

and working memory to be very sensitive when differentiating individuals according to time to 

predicted HD onset 3,19. However clinical biomarkers are limited when differentiating between 

symptomatic improvement and progression of the disease 20.  Additionally they seldom provide 

any information pertaining to the fundamental disease mechanisms or disease pathogenesis, 

emphasizing the need for additional non-clinical biomarkers 3.   

Very few studies have investigated the potential of metabolomics methodologies to discover 

novel biochemical biomarkers for HD. A range of studies have demonstrated the utility of 

metabolomic profiling techniques in accurately distinguishing neurodegenerative diseases from 

healthy controls 9,10,21-30.  Indeed, it has been successful in identifying plasma biomarker panels 

for the clinical diagnosis of Alzheimer’s disease (AD) in individuals with amnestic mild 

cognitive impairment 31. However there is a significant paucity of reliable “state” biomarkers 

which accurately discriminates pre-manifest HD from manifest HD. The majority of HD 
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metabolomics experiments have been conducted with rodent models which mimic some of the 

pathology of human HD.  For instance Tsang et al., (2005) used proton nuclear magnetic 

resonance (1H NMR) and magic angle spinning NMR (MAS-NMR) to discriminate between 

R6/2 HD transgenic mice and wild-type controls.  In this study they analysed skeletal tissue, 

post-mortem (PM) brain, serum and urine from mice aged 4, 8 and 12 weeks.  They highlighted 

metabolite differences and potential pathways that may be affected 11. Underwood et al., (2006) 

applied GC-Tof-MS metabolite profiling techniques to serum samples from human HD patients 

(prodromal) and a transgenic mouse model in their search for biomarkers.  They identified 1275 

metabolite peaks but none of their predictive models reached statistical significance.  However, 

they did find that fatty acid β-oxidation and nucleic acid breakdown were commonly affected in 

human and murine models 10.  Verwaest et al., (2011) applied 1H NMR metabolomics to study 

the difference between transgenic mice and WT-control litter mates using CSF and serum.  They 

produced multivariate models which distinguished between transgenic mice and WT controls 

with 84.9% and 72.73% predictive power for serum and CSF, respectively. In addition they 

produced support vector machine models; one of which was capable of differentiating between 

transgenic mice and WT controls with a receiver operating characteristics (ROC) value of 0.71 

for serum. Unfortunately no significant differences where observed within the SVM model 

created from CSF data, but the study did suggest that mitochondrial energy dysfunction occurs in 

HD 9.  Chang et al., (2011) applied GC-Tof-MS metabolomic profiling to the plasma and brain 

tissue of the 3-NP early stage HD rat model (proposed as a model of pre-manifest HD).  They 

produced predictive models which weakly differentiating transgenic mice from WT-controls 

with 52.4% and 30.2 % accuracy for brain and plasma, respectively 29.  Having reviewed the 

current literature (described above) we can conclude that progress in this research field has been 
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hampered by a lack of studies involving human HD specimens.  Therefore, we undertook 1H 

NMR biochemical profiling of the polar metabolome of post-mortem human brain from two 

different regions (frontal lobe and striatum) from HD patients and aged-matched control 

subjects.  The aim was to identify novel CNS biomarkers of HD, and also to discover previously 

unknown fronto-striatal perturbations associated with the onset of HD. 
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Materials and Methods 

Samples 

Brain tissue specimens (frontal lobe and striatum) were obtained from post-mortem HD cases 

(n=14) and also from control subjects (n=14) with no apparent Huntington’s pathology.  All HD 

cases showed a moderately to severely atrophied corpus striatum consistent with grades 2 or 3.  

Exact CAG repeat numbers were not available; the clinical diagnosis of HD was confirmed by 

genetic testing in all cases, except cases BBN_3211 and BBN_6070. Diagnosis of HD in these 

instances was made by the presence of ubiquitinated/p62 positive intra-nuclear inclusions within 

cortical and striatal neurons. All other HD cases also demonstrated such inclusions. None were 

observed in the control cases.  Details such as Vonsattel grading, age, gender, race and post-

mortem delay can be found in Supplementary Table 1. Tissues were obtained from the 

University of Manchester Brain and Tissue Bank.   

Sample Preparation 

Frozen tissue samples (∼5 g) were lyophilized (Christ Freeze Dryer, IMA Life, USA) and milled 

to a fine powder (Freezer/Mill 6870, Spex Sample Prep, USA) and 50 mg (±0.5 mg) was added 

to 500 µL of 50% methanol/water in a 2 mL sterile Eppendorf tube. The samples were mixed for 

10 min, sonicated for 20 min and the protein removed by centrifugation at 13,000 g at 4 °C for 

20 min 21,22.  Supernatants were collected, dried under vacuum using a Savant DNA Speedvac 

(Thermo Scientific, USA) and reconstituted in 285 µl of 50 mM sodium phosphate buffer (pH 

7.0), 30 µl of  Sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) and 35 µl of D2O 32.  200 µl 

of sample was transferred to a 3 mm Bruker NMR tube for NMR analysis.  All samples were 

housed at 4°C in a thermostatically controlled SampleJet autosampler (Bruker-Biospin, USA).  
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Prior to analysis by NMR, samples were heated to room temperature over a 3 min before being 

transferred to the magnet. 

NMR Analysis 

All 1H-NMR experiments were recorded at 300.0 (±0.05) K on a Bruker Avance III HD 600 

MHz spectrometer (Bruker-Biospin, USA) operating at 600.13 MHz equipped with a 5 mm TCI 

cryoprobe. Using a randomized running order 1D 1H-NMR spectra were acquired using a pulse 

sequence developed by Ravanbakhsh et al. (2015) 33. Two hundred and fifty six transients were 

acquired. Chemical shifts (d) are reported in parts per million (ppm) of the operating frequency.  

The singlet produced by the DSS methyl groups was used as an internal standard for chemical 

shift referencing (set to 0 ppm, concentration 500 µM) and for quantification, all 1H-NMR 

spectra were processed and analysed using an in-house version of the Bayesil NMR automation 

software 33. Bayesil is a web based system that automatically identifies and quantifies 

metabolites based on a library of pure compounds. 

Statistical Analysis 

For the comparisons of each NMR metabolite, a Student’s t-test was performed. In the case of 

non-normal distributions, p-values were calculated based on the Mann-Whitney U test. P-values 

< 0.05 were considered statistically significant. Bonferroni corrected p-values (p=0.05/number of 

metabolites) were used to correct for multiple comparisons. Multivariate statistical analysis was 

used to determine if a predictive model could be produced based on the concentrations of the 

identified metabolites to differentiate between the two brain regions (frontal lobe and striatum) 

and the controls. Data were log-transformed and Pareto-scaled prior to using Principal 

Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA).  The 

variable importance in projection (VIP) plot that ranks the metabolites in order of their 
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importance to a predictive model was generated. The greater the score on the x-axis is the greater 

the significance of that metabolite to the generated PLS-DA model. The PLS-DA models were 

subsequently subjected to permutation testing (2,000 iterations) to establish whether the observed 

discrimination between the groups was statistically significant (p-value < 0.05).  

Logistic regression analysis was performed with the generalized log-transformed data. The 

stepwise variable selection was also utilized for optimizing all the model components. 

Furthermore, a k-fold cross-validation (CV) technique was used to ensure that the logistic 

regression models were robust 41. In k-fold CV, the entire sample data is randomly divided into k 

equal sized subsets. Of the k subsets, only one subset is used as the validation data for testing the 

model, and the remaining (k-1) subsets are used as training set to generate the model. This results 

in predictive biomarker predictive models that are both robust and optimal.  

To determine the performance of each generated model, the area under the receiver operating 

characteristics curve (AUROC or AUC) was calculated with sensitivity and specificity using 

previously described techniques 34.  A receiver operator characteristic (ROC) curve is plotted 

with sensitivity values on the Y-axis and the corresponding FPR (1-specificity) on the X-axis. 

The area under the ROC curve (AUC) indicates the accuracy of a test for correctly distinguishing 

cases from controls. An AUC=1 indicates perfect discrimination. The 95 % CI for the AUC 

curves were also calculated.  All these analyses were performed using the MetaboAnalyst 

software 35-38.  

Pathway Analysis 

Metabolites that were found to be significantly different (p-value<0.05) between HD and 

controls were analyzed using the pathway topology search tool in Metaboanalyst (v 3.0) 35-37. 
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The pathway library chosen was for Homo sapiens (human) and all compounds in selected 

pathways were used when referencing the specific metabolome.  Fisher’s exact test was applied 

to perform over-representation analysis and “relative betweeness centrality” was chosen for the 

pathway topology testing.  Pathways that had both a Holm adjusted p-value <0.05 and FDR p-

value <0.05 were considered to be altered due to HD.    
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Results 

Figure 1 displays a labelled 1H NMR spectrum of the extract taken from the frontal lobe of PM 

human brain of a HD sufferer.  In total 39 metabolites were accurately identified and quantified 

using 1H NMR.  Figure 2a and 2c display the PLS-DA scores plots for both frontal lobe and 

striatum from controls vs. HD sufferers, respectively.  The scores plots show good separation 

between the two sample sets.  Extracts from striatum produced better models with greater 

separation compared with frontal lobe extracts.  Figures 2b and 2d display the variable 

importance in projection (VIP) plots for both the frontal lobe and striatum discriminant models, 

respectively.  These two VIP plots rank the metabolites in order of their importance to the 

predictive models.  The greater the height on the x-axis the greater the significance of that 

metabolite to that particular model. In addition following 2000 rounds of permutation testing the 

probability of each model being statistically significant (p<0.05) were p=0.025 and p=0.0004 for 

the frontal lobe and striatum, respectively.  With these p-values, extracts from the striatum were 

found to produce better models with increased separation in comparison with frontal lobe 

extracts.  

 Table 1 lists the results of the univariate analysis of all the metabolites recorded and 

quantified in the frontal lobe of controls and HD sufferers.   Of the 39 metabolites only 4 reached 

statistical significance (p<0.05; q<0.3).  These include tyrosine, l-phenylalanine, myo-inositol 

and l-leucine. Using the concentration data a pathway analysis was completed and it found that a 

total of 5 pathways were disrupted as a result of HD.  However when stringent thresholds (Holm 

Adjusted p-value<0.05; q<0.05) were placed on these results only 3 pathways were found to be 

affected.  These included inositol phosphate metabolism, galactose metabolism and ascorbate 

and aldarate metabolism (Supplementary Table 2). 
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 Table 2 lists the results of the univariate analysis of all the metabolites recorded and 

quantified in striatum from control and HD sufferers.  Of the 39 metabolites 15 were recorded as 

being significantly different (p<0.05; q<0.3) between HD and controls.  As for the frontal lobe a 

pathway analysis was performed to determine which biochemical pathways are affected as a 

direct result of HD in the striatum.  A total of 7 pathways were detected as being disrupted as a 

result of HD; however this number was reduced to 4 when we applied the same thresholds for 

significance as previously (P<0.05; q<0.05).  The remaining pathways include: Inositol 

phosphate metabolism, galactose metabolism, glyoxylate and dicarboxylate metabolism and 

ascorbate and aldarate metabolism (Supplementary Table 3).  

PLS-DA analysis was conducted to determine differences between the two brain regions.  

Figure 3a displays the results of the PLS-DA analysis between control subjects taken from 

frontal lobe and striatum.  As is evident complete separation was achieved (p=0.003 following 

permutation testing; 2,000 repeats).  Figure 3c shows the PLS-DA scores plot from HD sufferers 

taken from both the frontal lobe and striatum (p<0.001 following permutation testing; 2,000 

repeats).  Here also there was complete separation of the two brain regions.  Figures 3b and 3d 

display the VIP plots for the control and HD regions, respectively.  As may have been expected 

different metabolites were responsible for the variation between regions collected from controls 

and the regions collected from HD patients.  Supplementary Table 4 displays the results of the 

univariate analysis for frontal lobe extracts vs. striatum extracts from controls. Of the 39 

metabolites a total of 6 metabolites were deemed to be statistically different (p<0.05; q<0.3) 

between the two regions. Supplementary Table 5 displays the univariate analysis for frontal lobe 

extracts vs. striatum extracts from HD cases. Of the 39 metabolites identified and quantified only 

7 were found to be at statistically significantly different concentrations between the two regions.  
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Figure 4a shows the results of ROC analysis undertaken using the concentrations of tyrosine, L-

leucine and L-phenylalanine for control vs. HD data acquired from the frontal lobe extracts. 

During the process of selecting the best performing model it was deemed necessary to exclude 

myo-inositol from the PLS-DA model.  An AUC of 0.752 (0.539-0.92) was achieved and 

following permutation testing (1000 repeats) a p-value of 0.108 was achieved demonstrating that 

the model does not reach significance when analysed using the PLS-DA algorithm.  Figure 4b, 

displays the results of the logistic regression model ROC analysis following 10 fold cross 

validations.  After performing the stepwise variable selection with the significantly different 

metabolites (p < 0.05), a logistic regression algorithm was created using the concentrations of 

tyrosine alone in the frontal extracts.  The formula for the logistic regression algorithm is as 

follows: 

The formal equation of the logistic regression model is written as logit(π) = β0 + β0X1 + β2X2 +… 

+ βkXk, where π is the probability of the proportion of HD case in a group, and Xi is the 

metabolite concentrations as k covariates. logit(π) =   – 0.006 – 1.439 Tyrosine, where 0.43 is the 

threshold.  The performance values for both the ROC analysis and the logistic regression 

algorithm are available as Tables 3a and 3b, respectively. 

Figure 4c displays the results of the ROC analysis calculated using the concentrations of 

urea, valine, tyrosine and 4-aminobutyrate for control vs HD data acquired using striatum 

extracts.  An AUC of 0.917 (CI: 0.75-1) was calculated and following permutation testing (1000 

repeats) for the ROC analysis, the PLS-DA model reached significance (p=0.015). Figure 4d 

displays the ROC results of the logistic regression model created using the concentrations of 

tyrosine and urea with a 10-fold cross validation applied. The logistic regression algorithm for 

these two metabolite concentrations in striatum is:   
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The formal equation of logistic regression model is written as  

 logit(π) = – 0.594 – 3.068 Tyrosine – 2.421 Urea, where a threshold is 0.43 is applied.  The 

performance values for both the ROC analysis and logistic regression algorithm are available in 

table 4a and 4b, respectively. 

Pathway analysis showed which biochemical pathways differed between the two regions under 

for Control cases and for HD patients. For control subjects only Butanoate metabolism was 

found to be significantly different (Holm adjusted P=0.006; fdr=0.006) between the two regions.  

However, 7 biochemical pathways were found to be affected across the two regions in HD 

brains, and of these only glycoxylate and dicarboxylate metabolism reached statistical 

significance (Holm adjusted p=0.0002; q=0.0002).  The results are summarised as 

Supplementary Table 6. 
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Discussion 

This is the first 1H NMR based metabolomic investigation of human HD brain.  We analysed 

specimens collected from two brain regions: the frontal lobe and the striatum. The decision to 

focus on these regions was based on the fact that fronto-striatal circuitry dysfunction is a 

recognized clinical feature of HD 39.  Using the 1H NMR data acquired we confidently identified 

and quantified 39 metabolites in both brain regions.  Metabolite concentration data led to the 

development of two multivariate discriminant models which accurately differentiated between 

the control and HD specimens for both the frontal lobe and striatum (p=0.003 and p<0.001 

following permutation testing, respectively; 2,000 repeats). 

 Importantly, we observed different metabolites to be significantly affected in the two 

brain regions.  This heterogeneity demonstrates that the biochemistry in these two anatomical 

regions is perturbed to different extents after the onset of HD.  Analysis of frontal lobe showed 

that the concentrations of four metabolites were significantly perturbed in HD compared with 

control extracts.  In this instance we have based significance on p<0.05 and q<0.3 due to the 

small sample number, and also the small number of metabolites identified and quantified in this 

study.  The metabolites which significantly differed between controls and HD sufferers in the 

frontal lobe included:  tyrosine, L-phenylalanine, myo-inositol and L-leucine (Table 1). 

 Analysis of striatum revealed that 15 metabolites were significantly perturbed in HD 

compared with control extracts (Table 2).  These include: 4-aminobutyrate, glycine, formate, L-

glutamic acid, tyrosine, L-phenylalanine, aspartate, inosine, myo-inositol, taurine, urea, uracil, L-

leucine, valine and niacinamide (Table 2).  Only four metabolites tyrosine, L-phenylalanine, 

myo-inositol and L-leucine differed across both brain regions.  There was however a degree of 

consistency in the responses we observed. Tyrosine, L-phenylalanine and L-leucine were always 
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decreased in HD brain and myo-inositol was consistently increased.  Tyrosine is an essential 

amino acid which readily crosses the blood-brain barrier (BBB).  Tyrosine is a precursor for the 

biosynthesis of the neurotransmitters of the sympathetic nervous system (i.e. dopamine, 

norepinephrine and epinephrine).  L-phenylalanine is a precursor of tyrosine, therefore making 

L-phenylalanine also precursor of these catecholamine neurotransmitters. Hyperactivity of the 

sympathetic nervous system has been reported in HD sufferers40, and it could be speculated that 

increased neurotransmitter biosynthesis leads to depletion of tyrosine and L-phenylalanine 

precursors in both the frontal lobe and striatum.   

L-leucine is one of three essential branched chain amino acids (BCAA) which regulates 

protein synthesis by activating mTor (mammalian target of rapamycin)41, increases reutilization 

of amino acids and reduces protein breakdown (www.HMDB.ca).  The results here corroborate 

earlier findings that L-leucine is lower in HD patients42,43.  The strong correlation between 

essential amino acids and IGF-1 has been extensively described 44,45,46.  Interestingly Mochel et 

al., report a correlation between low BCAA levels  and IGF-143 with  IGF-1 known to activate 

the serine-threonine Akt pathway to which huntingtin is a substrate47.  The potential disease 

relevance is that decreased activation of this particular biochemical pathway has been linked to 

the neuronal toxicity resulting from the reduced phosphorylation of the mutated huntingtin 

protein43.  

Myo-inositol is a cyclic polyalcohol playing an important second messenger role (inositol 

phosphates) in the cell (www.HMDB.ca). Myo-inositol is considered to be a strong a 

marker/indicator of gliosis48 with the prototypical biochemical change being the increase in glia 

fibrillary acid protein.  This change is common to all forms of brain injury characterized as an 

increase in astrocyte cell body and its processes 49.  Here, myo-inositol is significantly elevated in 

http://www.hmdb.ca/
http://www.hmdb.ca/
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HD brain50 which can be directly correlated to an increase in gliosis as the disease progresses 

across the frontal-striatal circuits.     

Using the acquired data we examined brain region-specific differences in the metabolome 

of the frontal lobe and the striatum. There was complete separation of frontal lobe and striatum 

(figures 3a and 3c) both when the controls were selected or the HD cases. However, the top 

ranking measured metabolites (in terms of VIP scores) differed substantially for the control and 

HD scores plots (Figures 3b and 3d, respectively).  Univariate statistical examination of control 

frontal lobe and striatum found six metabolites to significantly (p<0.05; q<0.3) differ between 

the two brain regions (Supplementary Table 4).  These included: 4-aminobutyrate, ethanolamine, 

inosine, homocitrulline, N-acetylaspartic acid (NAA) and niacinamide.  Similarly, for HD cases 

a total of seven metabolites significantly differed (p<0.05; q<0.3) between the two brain regions 

(Supplementary Table 4).  These included: formate, L-glutamic acid, ethanolamine, myo-inositol, 

succinate, homocitrulline and NAA.  We then eliminated those metabolites which significantly 

differed between controls and HD.  This enabled us to focus entirely on those fronto-stratial 

metabolite changes which were impacted by HD pathology.  These metabolites were formate, 

myo-inositol and succinate which were all increased in striatum, and also L-glutamic acid which 

was increased in the frontal lobe.  Formate or formic acid is an intermediary metabolite under 

normal metabolic conditions.  It plays a role in metabolic acidosis and inhibiting cytochrome 

oxidase activity (terminal electron in the electron transport chain) leading to cell death by 

depleting ATP reserves and producing reactive oxygen species.  Succinate (the anion of succinic 

acid) is a component of the citric acid cycle which is capable of donating electrons to the 

electron transfer chain (www.HMDB.ca).  Higher concentrations of both succinate and formate 

in the striatum could suggest that both the citric acid cycle and electron transfer chain are 
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significantly reduced in the frontal lobe.  Higher concentrations of myo-inositol could indicate 

that gliosis is more prevalent in the striatum than the frontal lobe. L-glutamic acid (glutamate) is 

the most abundant fast excitatory neurotransmitter in the mammalian nervous system.  Lower 

glutamate levels in the striatum would seem to fit with the higher levels of myo-inositol and 

increased gliosis.  Following the synaptic release of neurotransmitters, glia cells restrict diffusion 

and inactivate and recycle a variety of neurotransmitters to include: glutamate, GABA and 

catecholamines 51,52. Decreased concentration of glutamate in the striatum suggests glial damage 

has occurred. Taken together with the increased concentrations of myo-inositol this suggests that 

there is more gliosis in the striatum than the frontal lobe.      

One of the main findings of this study is that HD pathology has a much greater effect on 

biochemical perturbations in the striatum than it does in the frontal lobe.  In addition to the 

multivariate analysis we undertook logistic regression analyses and this demonstrated that the 

data obtained from the striatum extracts produced logistic regression models with increased 

sensitivity and specificity following a 10-fold cross validation (Table 3 and 4; frontal lobe and 

striatum, respectively).  In addition, frontal lobe data (unlike the striatum) produced a PLS-DA 

model which failed to reach any statistical significance (p=0.108) following 1,000 permutation 

tests.  The PLS-DA model created with striatum data did reach statistical significance following 

cross validation (1000 permutation tests; p=0.015) which enabled us to be confident that the 

algorithm developed using the striatum data is accurate for the identification of controls from HD 

sufferers based on the concentrations of tyrosine and urea evident from the equation. 
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Conclusions 

This first 1H NMR metabolomics investigation examined how HD affects two regions of the 

human brain and identified a number of biochemical changes. The metabolite data produces 

statistical models that accurately discriminate between the striatum of control subjects and HD 

patients. Metabolites identified here could be considered potential biomarkers for detecting and 

monitoring HD and perhaps in vivo magnetic resonance spectroscopy methodologies could be 

employed here.  The major metabolites which were significantly affected (p<0.05) in the frontal 

lobe of HD specimens were L-leucine, myo-inositol, L-phenylalanine and tyrosine.  Those 

metabolite concentrations significantly different (p<0.05) in the striatum of HD specimens were: 

4-aminobutyrate, aspartate, formate, L-glutamic acid, glycine, inosine, L-leucine, niacinamide, 

myo-inositol, L-phenylalanine, taurine, tyrosine, uracil, urea and valine.  This study 

demonstrates the suitability and potential power of applying NMR-based metabolomics protocols 

for the study of HD. Indeed more metabolomic methodologies could be focused on HD. For 

instance, there are rodent models of HD available which could allow a longitudinal examination 

of the changes occurring in blood and brain metabolome. This approach has recently been 

demonstrated for Alzheimer’s disease-like pathology 53. Also, the use of larger sample sizes and 

different sample types could enable researchers to identify the earliest signs of disease (pre-

manifest HD). In the long-term the discovery of metabolite biomarkers could improve patient 

stratification and in turn improve clinical trial outcomes which could aid in the development of 

disease-modifying therapies for HD.  
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Figure Legends 

Figure 1. NMR spectroscopy of Huntington Disease (HD) brain extract (Frontal lobe). 

Typical 1D 1H NMR spectrum of a polar extract taken from HD striatum with identified 

metabolites labelled in the aliphatic (a) and aromatic regions of the spectrum (b). 1, 1-

Methylhistidine; 2, Adenine; 3, Acetic Acid; 4, Ascorbic Acid; 5, Creatine; 6, 

Glycerophosphocholine; 7, Choline; 8, 4-Aminobutyrate; 9, Glycine; 10, Formate; 11, L-

Glutamic Acid; 12, Ethanolamine; 13, Hypozxanthine; 14, Tyrosine; 15, L-Phenylalanine; 16, L-

Alanine; 17, L-Threonine; 18, Isoleucine; 19, L-Lactic Acid; 20, Aspartate; 21, Anserine; 22, 

Inosine; 23, Myo-inositol; 24, Taurine; 25, Succinate; 26, Urea; 27, Uracil; 28,  3-

Hydroxybutyric acid; 29, Adenosine triphosphate; 30, L-Glutamine; 31, Homocitrulline; 32, L-

Leucine; 33, N-Acetylaspartic Acid; 34, Valine; 35, Niacinamide; 36, Phosphorylcholine; 37, 

Isobutyric acid; 38, Propylene glycol; 39, Glutathione-Oxidised. 

Figure 2.  Multivariate comparisons of control and HD. (a) the PLS-DA (showing the 

separation between groups) scores plot of control (n=14; blue dots) vs. HD (n=14; red crosses) 

data from the frontal lobe; (b) the VIP plot (showing the metabolites most important for 

classifying groups) for the frontal lobe data; (c)  the PLS-DA scores plot of control (n=14; blue 

dots) vs. HD (n=14; red crosses) data from the striatum region of  the brain; (d) the VIP plot for 

the striatum region data. 

Figure 3.  Multivariate comparisons of striatum and frontal lobe. (a) the PLS-DA scores plot 

of frontal lobe (n=14; blue dots) vs. the striatum region (n=14; red crosses) from the control 

cases; (b) the VIP plot for the control data; (c) the PLS-DA scores plot of frontal lobe (n=14; 
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blue circles) vs. striatum region (n=14; red dots) from the HD cases; (d) the VIP plot for the HD 

cases. 

Figure 4. Receiver operating characteristics (ROC) curve analysis of metabolite data. (a) 

the ROC analysis illustrates the performance of metabolites as biomarkers discriminating control 

vs. HD in the frontal lobe.  AUC: 0.752 (CI: 0.539-0.92); (b) logistic regression ROC analysis of 

control vs. HD of frontal lobe data following 10-fold cross validations. AUC: 0.745 (CI: 0.558-

0.931); (c) the ROC analysis for control vs. HD data acquired from striatum.  AUC: 0.917 (CI: 

0.75-1.00); (b) logistic regression ROC analysis of control vs. HD from striatum following 10-

fold cross validations. AUC: 0.838 (CI: 0.673-1.00). 

 

  


