712 research outputs found

    Comparison of weight changes following unilateral and staged bilateral STN DBS for advanced PD

    Get PDF
    Unilateral and bilateral subthalamic nucleus deep brain stimulation (STN DBS) in Parkinson's disease (PD) result in weight gain in the initial postoperative months, but little is known about the changes in weight following unilateral and staged bilateral STN DBS over longer time intervals. A case–control comparison evaluated weight changes over 2 years in 43 consecutive unilateral STN DBS patients, among whom 25 elected to undergo staged bilateral STN DBS, and 21 age-matched and disease severity matched PD controls without DBS. Regression analyses incorporating age, gender, and baseline weight in case or control were conducted to assess weight changes 2 years after the initial unilateral surgery. Unilateral STN DBS and staged bilateral STN DBS patients gained 3.9 ± 2.0 kg and 5.6 ± 2.1 kg versus their preoperative baseline weight (P < 0.001, respectively) while PD controls without DBS lost 0.8 ± 1.1 kg. Although bilateral STN DBS patients gained 1.7 kg more than unilateral STN DBS patients at 2 years, this difference was not statistically significant (P = 0.885). Although there was a trend toward greater weight gain in staged bilateral STN DBS patients versus unilateral patients, we found no evidence for an equivalent or synergistic increase in body weight following placement of the second DBS electrode

    Structural subnetwork evolution across the life-span: rich-club, feeder, seeder

    Full text link
    The impact of developmental and aging processes on brain connectivity and the connectome has been widely studied. Network theoretical measures and certain topological principles are computed from the entire brain, however there is a need to separate and understand the underlying subnetworks which contribute towards these observed holistic connectomic alterations. One organizational principle is the rich-club - a core subnetwork of brain regions that are strongly connected, forming a high-cost, high-capacity backbone that is critical for effective communication in the network. Investigations primarily focus on its alterations with disease and age. Here, we present a systematic analysis of not only the rich-club, but also other subnetworks derived from this backbone - namely feeder and seeder subnetworks. Our analysis is applied to structural connectomes in a normal cohort from a large, publicly available lifespan study. We demonstrate changes in rich-club membership with age alongside a shift in importance from 'peripheral' seeder to feeder subnetworks. Our results show a refinement within the rich-club structure (increase in transitivity and betweenness centrality), as well as increased efficiency in the feeder subnetwork and decreased measures of network integration and segregation in the seeder subnetwork. These results demonstrate the different developmental patterns when analyzing the connectome stratified according to its rich-club and the potential of utilizing this subnetwork analysis to reveal the evolution of brain architectural alterations across the life-span

    Effectiveness of bisphosphonates on nonvertebral and hip fractures in the first year of therapy: The risedronate and alendronate (REAL) cohort study

    Get PDF
    INTRODUCTION: Randomized clinical trials have shown that risedronate and alendronate reduce fractures among women with osteoporosis. The aim of this observational study was to observe, in clinical practice, the incidence of hip and nonvertebral fractures among women in the year following initiation of once-a-week dosing of either risedronate or alendronate. METHODS: Using records of health service utilization from July 2002 through September 2004, we created two cohorts: women (ages 65 and over) receiving risedronate (n = 12,215) or alendronate (n = 21,615). Cox proportional hazard modeling was used to compare the annual incidence of nonvertebral fractures and of hip fractures between cohorts, adjusting for potential differences in risk factors for fractures. RESULTS: There were 507 nonvertebral fractures and 109 hip fractures. Through one year of therapy, the incidence of nonvertebral fractures in the risedronate cohort (2.0%) was 18% lower (95% CI 2% – 32%) than in the alendronate cohort (2.3%). The incidence of hip fractures in the risedronate cohort (0.4%) was 43% lower (95% CI 13% – 63%) than in the alendronate cohort (0.6%). These results were consistent across a number of sensitivity analyses. CONCLUSION: Patients receiving risedronate have lower rates of hip and nonvertebral fractures during their first year of therapy than patients receiving alendronate

    Gravitational waves from single neutron stars: an advanced detector era survey

    Full text link
    With the doors beginning to swing open on the new gravitational wave astronomy, this review provides an up-to-date survey of the most important physical mechanisms that could lead to emission of potentially detectable gravitational radiation from isolated and accreting neutron stars. In particular we discuss the gravitational wave-driven instability and asteroseismology formalism of the f- and r-modes, the different ways that a neutron star could form and sustain a non-axisymmetric quadrupolar "mountain" deformation, the excitation of oscillations during magnetar flares and the possible gravitational wave signature of pulsar glitches. We focus on progress made in the recent years in each topic, make a fresh assessment of the gravitational wave detectability of each mechanism and, finally, highlight key problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor corrections to match published versio

    The GLY2019SER Mutation in LRRK2 is Not Fully Penetrant in Familial Parkinson\u27s Disease: the GenePD Study

    Get PDF
    Background: We report age-dependent penetrance estimates for leucine-rich repeat kinase 2 (LRRK2)-related Parkinson\u27s disease (PD) in a large sample of familial PD. The most frequently seen LRRK2 mutation, Gly2019Ser (G2019S), is associated with approximately 5 to 6% of familial PD cases and 1 to 2% of idiopathic cases, making it the most common known genetic cause of PD. Studies of the penetrance of LRRK2 mutations have produced a wide range of estimates, possibly due to differences in study design and recruitment, including in particular differences between samples of familial PD versus sporadic PD. Methods: A sample, including 903 affected and 58 unaffected members from 509 families ascertained for having two or more PD-affected members, 126 randomly ascertained PD patients and 197 controls, was screened for five different LRRK2 mutations. Penetrance was estimated in families of LRRK2 carriers with consideration of the inherent bias towards increased penetrance in a familial sample. Results: Thirty-one out of 509 families with multiple cases of PD (6.1%) were found to have 58 LRRK2 mutation carriers (6.4%). Twenty-nine of the 31 families had G2019S mutations while two had R1441C mutations. No mutations were identified among controls or unaffected relatives of PD cases. Nine PD-affected relatives of G2019S carriers did not carry the LRRK2 mutation themselves. At the maximum observed age range of 90 to 94 years, the unbiased estimated penetrance was 67% for G2019S families, compared with a baseline PD risk of 17% seen in the non-LRRK2-related PD families. Conclusion: Lifetime penetrance of LRRK2 estimated in the unascertained relatives of multiplex PD families is greater than that reported in studies of sporadically ascertained LRRK2 cases, suggesting that inherited susceptibility factors may modify the penetrance of LRRK2 mutations. In addition, the presence of nine PD phenocopies in the LRRK2 families suggests that these susceptibility factors may also increase the risk of non-LRRK2-related PD. No differences in penetrance were found between men and women, suggesting that the factors that influence penetrance for LRRK2 carriers are independent of the factors which increase PD prevalence in men

    The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management.

    Get PDF
    Plasma triglyceride concentration is a biomarker for circulating triglyceride-rich lipoproteins and their metabolic remnants. Common mild-to-moderate hypertriglyceridaemia is typically multigenic, and results from the cumulative burden of common and rare variants in more than 30 genes, as quantified by genetic risk scores. Rare autosomal recessive monogenic hypertriglyceridaemia can result from large-effect mutations in six different genes. Hypertriglyceridaemia is exacerbated by non-genetic factors. On the basis of recent genetic data, we redefine the disorder into two states: severe (triglyceride concentration >10 mmol/L), which is more likely to have a monogenic cause; and mild-to-moderate (triglyceride concentration 2-10 mmol/L). Because of clustering of susceptibility alleles and secondary factors in families, biochemical screening and counselling for family members is essential, but routine genetic testing is not warranted. Treatment includes management of lifestyle and secondary factors, and pharmacotherapy. In severe hypertriglyceridaemia, intervention is indicated because of pancreatitis risk; in mild-to-moderate hypertriglyceridaemia, intervention can be indicated to prevent cardiovascular disease, dependent on triglyceride concentration, concomitant lipoprotein disturbances, and overall cardiovascular risk
    corecore