13,535 research outputs found

    A study of polymers containing silicon- nitrogen bonds progress report, nov. 4 - dec. 3, 1964

    Get PDF
    Polymers containing silicon-nitrogen bonds as liquid and plastic materials in space and aviation technolog

    A study of polymers containing silicon- nitrogen bonds Annual summary report, May 4, 1965 - May 3, 1966

    Get PDF
    Polymers containing silicon-nitrogen bonds as elastomers with high thermal stability for aerospace application

    Europa: Prospects for an ocean and exobiological implications

    Get PDF
    As far as we know, Earth is the only planet in our solar system that supports life. It is natural, therefore, that our understanding of life as a planetary phenomenon is based upon Earth-like planets. There are environments in the solar system where liquid water, commonly believed to be a prerequisite for biological activity, may exist in a distinctly non-Earth-like environment. One such location is Europa, one of the Galilean satellites of Jupiter. The possibility that liquid water exists on Europa presents us with some interesting exobiological implications concerning the potential of the satellite to support life. Topics include the following: an ocean on Europa; thermal evolution of Europa; Europa's three models; exobiological implications; early conditions of Europa; low-temperature abiotic chemistry; possibility of the emergence of life on Europa; prerequisites for the habitability of Europa; energy sources for biosynthesis and metabolic activity; habitability of Europa by anaerobic life; and habitability by aerobic life

    Accretional heating of the satellites of Saturn and Uranus

    Get PDF
    Voyager images of the satellites of Saturn and Uranus have shown that these bodies are characterized by remarkable diversity and surprisingly complex geologic histories. Despite their small sizes, a number of the satellites show unambiguous evidence for resurfacing. The goal was to develop a detailed model for heating of these small satellites, and then to explore the consequences of variations in the free parameters in the model. Specifically an attempt was made to determine for what range of conditions melting will occur in these satellites. Along with varying a number of model parameters, the important effects of inclusion of small amounts of ammonia and methane in the system were considered

    High Reynolds number tests of a Boeing BAC I airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    Get PDF
    A wind tunnel investigation of an advanced-technology airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents the first in a series of NASA/U.X. industry two dimensional airfoil studies to be completed in the Advanced Technology Airfoil Test program. Test temperature was varied from ambient to about 100 K at pressures ranging from about 1.2 to 6.0 atm. Mach number was varied from about 0.40 to 0.80. These variables provided a Reynolds number (based on airfoil chord) range from about .0000044 to .00005. This investigation was specifically designed to: (1) test a Boeing advanced airfoil from low to flight-equivalent Reynolds numbers; (2) provide the industry participant (Boeing) with experience in cryogenic wind-tunnel model design and testing techniques; and (3) demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. All the objectives of the cooperative test were met. Data are included which demonstrate the effects of fixed transition, Mach number, and Reynolds number on the aerodynamic characteristics of the airfoil. Also included are remarks on the model design, the model structural integrity, and the overall test experience

    Fluxoid formation: size effects and non-equilibrium universality

    Full text link
    Simple causal arguments put forward by Kibble and Zurek suggest that the scaling behaviour of condensed matter at continuous transitions is related to the familiar universality classes of the systems at quasi-equilibrium. Although proposed 25 years ago or more, it is only in the last few years that it has been possible to devise experiments from which scaling exponents can be determined and in which this scenario can be tested. In previous work, an unusually high Kibble-Zurek scaling exponent was reported for spontaneous fluxoid production in a single isolated superconducting Nb loop, albeit with low density. Using analytic approximations backed up by Langevin simulations, we argue that densities as small as these are too low to be attributable to scaling, and are conditioned by the small size of the loop. We also reflect on the physical differences between slow quenches and small rings, and derive some criteria for these differences, noting that recent work on slow quenches does not adequately explain the anomalous behaviour seen here.Comment: 7 pages, 4 figures, presentation given at CMMP 201
    • …
    corecore