11 research outputs found

    Numerical Modeling of Temperature Distributions within the Neonatal Head

    No full text
    Introduction of hypothermia therapy as a neuroprotection therapy after hypoxia-ischemia in newborn infants requires appraisal of cooling methods. In this numerical study thermal simulations were performed to test the hypothesis that cooling of the surface of the cranium by the application of a cooling bonnet significantly reduces deep brain temperature and produces a temperature differential between the deep brain and the body core. A realistic three-dimensional (3-D) computer model of infant head anatomy was used, derived from magnetic resonance data from a newborn infant. Temperature distributions were calculated using the Pennes heatsink model. The cooling bonnet was at a constant temperature of 10[degrees]C. When modeling head cooling only, a constant body core temperature of 37[degrees]C was imposed. The computed result showed no significant cooling of the deep brain regions, only the very superficial regions of the brain are cooled to temperatures of 33-34[degrees]C. Poor efficacy of head cooling was still found after a considerable increase in the modeled thermal conductivities of the skin and skull, or after a decrease in perfusion. The results for the heatsink thermal model of the infant head were confirmed by comparison of results computed for a scaled down adult head, using both the heatsink description and a discrete vessel thermal model with both anatomy and vasculature obtained from MR data. The results indicate that significant reduction in brain temperature will only be achieved if the infant's core temperature is lowered

    On Some Geometric Aspects of Coherent States

    No full text
    In this note we review some issues in the geometrical approach to coherent states (CS). Specifically, we reformulate the standard (compact, simple) Lie group CS by placing them within the frameworks of geometric quantum mechanics and holomorphic geometric quantization and establishing a connection with Fisher information theory. Secondly, we briefly revisit the CS-approach to the Hilbert space Grassmannian and the KP- hierarchy and finally we discuss the CS aspects emerging in the geometric approach to Landau levels via the Fourier-Mukai-Nahm transform

    Thermal modelling using discrete vasculature for thermal therapy:A review

    No full text
    Reliable temperature information during clinical hyperthermia and thermal ablation is essential for adequate treatment control, but conventional temperature measurements do not provide 3D temperature information. Treatment planning is a very useful tool to improve treatment quality, and substantial progress has been made over the last decade. Thermal modelling is a very important and challenging aspect of hyperthermia treatment planning. Various thermal models have been developed for this purpose, with varying complexity. Since blood perfusion is such an important factor in thermal redistribution of energy in in vivo tissue, thermal simulations are most accurately performed by modelling discrete vasculature. This review describes the progress in thermal modelling with discrete vasculature for the purpose of hyperthermia treatment planning and thermal ablation. There has been significant progress in thermal modelling with discrete vasculature. Recent developments have made real-time simulations possible, which can provide feedback during treatment for improved therapy. Future clinical application of thermal modelling with discrete vasculature in hyperthermia treatment planning is expected to further improve treatment qualit

    The Physical Urticarias

    No full text
    corecore